Suppr超能文献

Ti2448钛合金电子束粉末床熔融增材制造的材料表征与计算热模拟

Material Characterisation and Computational Thermal Modelling of Electron Beam Powder Bed Fusion Additive Manufacturing of Ti2448 Titanium Alloy.

作者信息

Wang Qiushuang, Zhang Wenyou, Li Shujun, Tong Mingming, Hou Wentao, Wang Hao, Hao Yulin, Harrison Noel M, Yang Rui

机构信息

Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.

School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China.

出版信息

Materials (Basel). 2021 Nov 30;14(23):7359. doi: 10.3390/ma14237359.

Abstract

Ti-24Nb-4Zr-8Sn (Ti2448) is a metastable β-type titanium alloy developed for biomedical applications. In this work, cylindrical samples of Ti2448 alloy have been successfully manufactured by using the electron beam powder bed fusion (PBF-EB) technique. The thermal history and microstructure of manufactured samples are characterised using computational and experimental methods. To analyse the influence of thermal history on the microstructure of materials, the thermal process of PBF-EB has been computationally predicted using the layer-by-layer modelling method. The microstructure of the Ti2448 alloy mainly includes phase and a small amount of α″ phase. By comparing the experimental results of material microstructure with the computational modelling results of material thermal history, it can be seen that aging time and aging temperature lead to the variation of α″ phase content in manufactured samples. The computational modelling proves to be an effective tool that can help experimentalists to understand the influence of macroscopic processes on material microstructural evolution and hence potentially optimise the process parameters of PBF-EB to eliminate or otherwise modify such microstructural gradients.

摘要

Ti-24Nb-4Zr-8Sn(Ti2448)是一种为生物医学应用而开发的亚稳β型钛合金。在本研究中,采用电子束粉末床熔融(PBF-EB)技术成功制备了Ti2448合金的圆柱形样品。利用计算和实验方法对制备样品的热历史和微观结构进行了表征。为了分析热历史对材料微观结构的影响,采用逐层建模方法对PBF-EB的热过程进行了计算预测。Ti2448合金的微观结构主要包括β相和少量的α″相。通过将材料微观结构的实验结果与材料热历史的计算建模结果进行比较,可以看出时效时间和时效温度会导致制备样品中α″相含量的变化。计算建模被证明是一种有效的工具,它可以帮助实验人员了解宏观过程对材料微观结构演变的影响,从而有可能优化PBF-EB的工艺参数,以消除或以其他方式改变这种微观结构梯度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa20/8658374/6c13393515e0/materials-14-07359-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验