Suppr超能文献

用于生物医学应用的增材制造β钛合金的前景

Perspectives on Additive Manufacturing Enabled Beta-Titanium Alloys for Biomedical Applications.

作者信息

Sing Swee Leong

机构信息

Department of Mechanical Engineering, National University of Singapore, Singapore.

Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.

出版信息

Int J Bioprint. 2022 Jan 12;8(1):478. doi: 10.18063/ijb.v8i1.478. eCollection 2022.

Abstract

"Stress shielding" caused by the mismatch of modulus between the implant and natural bones, is one of the major problems faced by current commercially used biomedical materials. Beta-titanium (β-Ti) alloys are a class of materials that have received increased interest in the biomedical field due to their relatively low elastic modulus and excellent biocompatibility. Due to their lower modulus, β-Ti alloys have the potential to reduce "stress shielding." Powder bed fusion (PBF), a category of additive manufacturing, or more commonly known as 3D printing techniques, has been used to process β-Ti alloys. In this perspective article, the emerging research of PBF of β-Ti alloys is covered. The potential and limitations of using PBF for these materials in biomedical applications are also elucidated with focus on the perspectives from processes, materials, and designs. Finally, future trends and potential research topics are highlighted.

摘要

植入物与天然骨骼之间模量不匹配所导致的“应力屏蔽”,是当前商业使用的生物医学材料面临的主要问题之一。β钛(β-Ti)合金是一类由于其相对较低的弹性模量和优异的生物相容性而在生物医学领域受到越来越多关注的材料。由于其模量较低,β-Ti合金具有降低“应力屏蔽”的潜力。粉末床熔融(PBF)作为增材制造的一种,或者更通常被称为3D打印技术,已被用于加工β-Ti合金。在这篇观点文章中,涵盖了β-Ti合金粉末床熔融的新兴研究。还从工艺、材料和设计的角度阐明了在生物医学应用中对这些材料使用粉末床熔融的潜力和局限性。最后,突出了未来趋势和潜在的研究主题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e029/8852259/46f12c82ae43/IJB-8-1-478-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验