文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

卟啉/叶绿素衍生物作为治疗结直肠癌的有前途的分子。

Porphyrin/Chlorin Derivatives as Promising Molecules for Therapy of Colorectal Cancer.

机构信息

Doctoral School of Sciences and Technology, Lebanese University, Hadath, Beirut 21219, Lebanon.

Laboratoire PEIRENE EA 7500, Faculté de Pharmacie et Faculté des Sciences et Techniques, Université de Limoges, 2 Rue du Dr Marcland, CEDEX, 87025 Limoges, France.

出版信息

Molecules. 2021 Nov 30;26(23):7268. doi: 10.3390/molecules26237268.


DOI:10.3390/molecules26237268
PMID:34885849
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8659284/
Abstract

Colorectal cancer (CRC) is a leading cause of cancer-related death. The demand for new therapeutic approaches has increased attention paid toward therapies with high targeting efficiency, improved selectivity and few side effects. Porphyrins are powerful molecules with exceptional properties and multifunctional uses, and their special affinity to cancer cells makes them the ligands par excellence for anticancer drugs. Porphyrin derivatives are used as the most important photosensitizers (PSs) for photodynamic therapy (PDT), which is a promising approach for anticancer treatment. Nevertheless, the lack of solubility and selectivity of the large majority of these macrocycles led to the development of different photosensitizer complexes. In addition, targeting agents or nanoparticles were used to increase the efficiency of these macrocycles for PDT applications. On the other hand, gold tetrapyrrolic macrocycles alone showed very interesting chemotherapeutic activity without PDT. In this review, we discuss the most important porphyrin derivatives, alone or associated with other drugs, which have been found effective against CRC, as we describe their modifications and developments through substitutions and delivery systems.

摘要

结直肠癌(CRC)是癌症相关死亡的主要原因。对具有高靶向效率、改善选择性和较少副作用的治疗方法的需求增加,使人们更加关注这些方法。卟啉是具有特殊性质和多功能用途的强大分子,其对癌细胞的特殊亲和力使它们成为抗癌药物的理想配体。卟啉衍生物被用作光动力疗法(PDT)的最重要的光敏剂(PS),这是一种很有前途的抗癌治疗方法。然而,大多数这类大环化合物缺乏溶解性和选择性,导致了不同光敏剂配合物的发展。此外,还使用靶向剂或纳米粒子来提高这些大环化合物在 PDT 应用中的效率。另一方面,金四吡咯大环化合物本身在没有 PDT 的情况下就显示出非常有趣的化疗活性。在这篇综述中,我们讨论了最重要的卟啉衍生物,单独或与其他药物联合使用,对 CRC 有效,我们描述了通过取代和输送系统对它们的修饰和发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/f44f798d89d6/molecules-26-07268-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/bff4e431b2d0/molecules-26-07268-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/3047d1b86fa7/molecules-26-07268-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/d2593d67395d/molecules-26-07268-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/83eb07f9d737/molecules-26-07268-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/547d2314c9c2/molecules-26-07268-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/61378be91590/molecules-26-07268-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/024fb92bb5bd/molecules-26-07268-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/72b5875630f9/molecules-26-07268-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/d98c34b8016d/molecules-26-07268-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/4017ad58c7e8/molecules-26-07268-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/fb452900ae7a/molecules-26-07268-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/dba4a7814e45/molecules-26-07268-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/86b032368357/molecules-26-07268-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/341c00561d14/molecules-26-07268-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/7dee4da5e0cb/molecules-26-07268-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/2cf2379efa88/molecules-26-07268-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/5eff953b488a/molecules-26-07268-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/7662660782fa/molecules-26-07268-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/51f9c190a46f/molecules-26-07268-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/90397faddcce/molecules-26-07268-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/baf06e5cd87b/molecules-26-07268-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/f44f798d89d6/molecules-26-07268-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/bff4e431b2d0/molecules-26-07268-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/3047d1b86fa7/molecules-26-07268-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/d2593d67395d/molecules-26-07268-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/83eb07f9d737/molecules-26-07268-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/547d2314c9c2/molecules-26-07268-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/61378be91590/molecules-26-07268-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/024fb92bb5bd/molecules-26-07268-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/72b5875630f9/molecules-26-07268-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/d98c34b8016d/molecules-26-07268-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/4017ad58c7e8/molecules-26-07268-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/fb452900ae7a/molecules-26-07268-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/dba4a7814e45/molecules-26-07268-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/86b032368357/molecules-26-07268-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/341c00561d14/molecules-26-07268-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/7dee4da5e0cb/molecules-26-07268-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/2cf2379efa88/molecules-26-07268-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/5eff953b488a/molecules-26-07268-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/7662660782fa/molecules-26-07268-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/51f9c190a46f/molecules-26-07268-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/90397faddcce/molecules-26-07268-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/baf06e5cd87b/molecules-26-07268-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca7/8659284/f44f798d89d6/molecules-26-07268-g022.jpg

相似文献

[1]
Porphyrin/Chlorin Derivatives as Promising Molecules for Therapy of Colorectal Cancer.

Molecules. 2021-11-30

[2]
Conjugates of Tetrapyrrolic Macrocycles as Potential Anticancer Target-Oriented Photosensitizers.

Top Curr Chem (Cham). 2023-2-24

[3]
A Comparative Evaluation of the Photosensitizing Efficiency of Porphyrins, Chlorins and Isobacteriochlorins toward Melanoma Cancer Cells.

Molecules. 2023-6-12

[4]
Antitumor effect of photodynamic therapy with chlorin-based photosensitizer DH-II-24 in colorectal carcinoma.

Cancer Sci. 2009-8-25

[5]
Advances in chlorin-based photodynamic therapy with nanoparticle delivery system for cancer treatment.

Expert Opin Drug Deliv. 2021-10

[6]
The Photosensitizing Efficacy of Micelles Containing a Porphyrinic Photosensitizer and KI against Resistant Melanoma Cells.

Chemistry. 2021-1-26

[7]
Nanoparticle-Mediated Delivery Systems in Photodynamic Therapy of Colorectal Cancer.

Int J Mol Sci. 2021-11-17

[8]
Photodynamic effects of porphyrin and chlorin photosensitizers in human colon adenocarcinoma cells.

Bioorg Med Chem. 2004-9-15

[9]
Core-shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy.

J Photochem Photobiol B. 2018-7-25

[10]
Porphyrin and phthalocyanine photosensitizers designed for targeted photodynamic therapy of colorectal cancer.

Bioorg Med Chem. 2021-1-15

引用本文的文献

[1]
pH-Responsive Nanophotosensitizer Boosting Antibacterial Photodynamic Therapy by Hydroxyl Radical Generation.

Nanomaterials (Basel). 2025-7-10

[2]
New Cannabinoids and Chlorin-Type Metabolites from the Flowers of L.: A Study on Their Neuroblastoma Activity.

Pharmaceuticals (Basel). 2025-4-3

[3]
Anticancer Activity of Ether Derivatives of Chrysin.

Molecules. 2025-2-19

[4]
Photodynamic Therapy in the Treatment of Cancer-The Selection of Synthetic Photosensitizers.

Pharmaceuticals (Basel). 2024-7-11

[5]
Photodynamic Therapy as a Desirable Approach in the Treatment of Colorectal Cancer, with Special Focus on Photodynamic Nanotherapeutics in Immunotherapy.

Curr Med Chem. 2024-1-24

[6]
Cationic Porphyrins as Antimicrobial and Antiviral Agents in Photodynamic Therapy.

Curr Issues Mol Biol. 2023-12-6

[7]
Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy-a critical review.

Naunyn Schmiedebergs Arch Pharmacol. 2024-6

[8]
Shining a Light on Prostate Cancer: Photodynamic Therapy and Combination Approaches.

Pharmaceutics. 2023-6-19

[9]
A Comparative Evaluation of the Photosensitizing Efficiency of Porphyrins, Chlorins and Isobacteriochlorins toward Melanoma Cancer Cells.

Molecules. 2023-6-12

[10]
Cellular Localization of Selected Porphyrins and Their Effect on the In Vitro Motility of Human Colon Tumors and Normal Cells.

Molecules. 2023-3-23

本文引用的文献

[1]
Review on supermolecules as chemical drugs.

Sci China B Chem. 2009

[2]
Design and synthesis of zinc protoporphyrin IX-adamantane/cyclodextrin/cellulose nanocrystals complexes for anticancer photodynamic therapy.

Bioorg Med Chem Lett. 2021-6-1

[3]
A promising anticancer drug: a photosensitizer based on the porphyrin skeleton.

RSC Med Chem. 2020-2-25

[4]
Evaluation of the correlation between porphyrin accumulation in cancer cells and functional positions for application as a drug carrier.

Sci Rep. 2021-1-21

[5]
Porphyrin Derivative Conjugated with Gold Nanoparticles for Dual-Modality Photodynamic and Photothermal Therapies In Vitro.

ACS Biomater Sci Eng. 2018-3-12

[6]
Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer.

Photodiagnosis Photodyn Ther. 2021-3

[7]
Porphyrin and phthalocyanine photosensitizers designed for targeted photodynamic therapy of colorectal cancer.

Bioorg Med Chem. 2021-1-15

[8]
Photodynamic therapy induces autophagy-mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway.

Cell Death Dis. 2020-10-31

[9]
An anticancer gold(III)-activated porphyrin scaffold that covalently modifies protein cysteine thiols.

Proc Natl Acad Sci U S A. 2020-1-2

[10]
Verteporfin- and sodium porfimer-mediated photodynamic therapy enhances pancreatic cancer cell death without activating stromal cells in the microenvironment.

J Biomed Opt. 2019-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索