Suppr超能文献

不对称 DNA 复制如何实现对称保真度。

How asymmetric DNA replication achieves symmetrical fidelity.

机构信息

Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, Durham, NC, USA.

Integrative Bioinformatics Support Group, NIH/NIEHS, DHHS, Research Triangle Park, Durham, NC, USA.

出版信息

Nat Struct Mol Biol. 2021 Dec;28(12):1020-1028. doi: 10.1038/s41594-021-00691-6. Epub 2021 Dec 9.

Abstract

Accurate DNA replication of an undamaged template depends on polymerase selectivity for matched nucleotides, exonucleolytic proofreading of mismatches, and removal of remaining mismatches via DNA mismatch repair (MMR). DNA polymerases (Pols) δ and ε have 3'-5' exonucleases into which mismatches are partitioned for excision in cis (intrinsic proofreading). Here we provide strong evidence that Pol δ can extrinsically proofread mismatches made by itself and those made by Pol ε, independently of both Pol δ's polymerization activity and MMR. Extrinsic proofreading across the genome is remarkably efficient. We report, with unprecedented accuracy, in vivo contributions of nucleotide selectivity, proofreading, and MMR to the fidelity of DNA replication in Saccharomyces cerevisiae. We show that extrinsic proofreading by Pol δ improves and balances the fidelity of the two DNA strands. Together, we depict a comprehensive picture of how nucleotide selectivity, proofreading, and MMR cooperate to achieve high and symmetrical fidelity on the two strands.

摘要

准确复制未受损模板的 DNA 依赖于聚合酶对匹配核苷酸的选择性、错配的外切核酸酶校对,以及通过 DNA 错配修复 (MMR) 去除剩余的错配。DNA 聚合酶 (Pols) δ 和 ε 具有 3'-5'外切核酸酶,错配会被分配到其中进行顺式(内在校对)切除。在这里,我们提供了强有力的证据表明,Pol δ 可以独立于 Pol δ 的聚合活性和 MMR ,对自身和 Pol ε 产生的错配进行外在校对。跨越基因组的外在校对效率非常高。我们以前所未有的准确性报告了核苷酸选择性、校对和 MMR 在酿酒酵母 DNA 复制保真度中的体内贡献。我们表明,Pol δ 的外在校对提高并平衡了两条 DNA 链的保真度。总之,我们描绘了一幅综合画面,展示了核苷酸选择性、校对和 MMR 如何合作,在两条链上实现高且对称的保真度。

相似文献

1
How asymmetric DNA replication achieves symmetrical fidelity.
Nat Struct Mol Biol. 2021 Dec;28(12):1020-1028. doi: 10.1038/s41594-021-00691-6. Epub 2021 Dec 9.
3
Emergence of DNA polymerase ε antimutators that escape error-induced extinction in yeast.
Genetics. 2013 Mar;193(3):751-70. doi: 10.1534/genetics.112.146910. Epub 2013 Jan 10.
4
Extrinsic proofreading.
DNA Repair (Amst). 2022 Sep;117:103369. doi: 10.1016/j.dnarep.2022.103369. Epub 2022 Jul 4.
5
Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans.
PLoS Genet. 2015 Mar 5;11(3):e1005049. doi: 10.1371/journal.pgen.1005049. eCollection 2015 Mar.
7
Mismatch repair balances leading and lagging strand DNA replication fidelity.
PLoS Genet. 2012;8(10):e1003016. doi: 10.1371/journal.pgen.1003016. Epub 2012 Oct 11.
8
Evidence that DNA polymerase δ proofreads errors made by DNA polymerase α across the Saccharomyces cerevisiae nuclear genome.
DNA Repair (Amst). 2024 Nov;143:103768. doi: 10.1016/j.dnarep.2024.103768. Epub 2024 Sep 21.
10
Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase α.
DNA Repair (Amst). 2013 Feb 1;12(2):92-6. doi: 10.1016/j.dnarep.2012.11.001. Epub 2012 Dec 11.

引用本文的文献

1
Evidence that transient replication errors initiate nuclear genome mutations.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf679.
2
Beyond proofreading: POLD1 mutations as dynamic orchestrators of genomic instability and immune evasion in cancer.
Front Immunol. 2025 Jun 30;16:1600233. doi: 10.3389/fimmu.2025.1600233. eCollection 2025.
4
High fidelity DNA ligation prevents single base insertions in the yeast genome.
Nat Commun. 2024 Oct 9;15(1):8730. doi: 10.1038/s41467-024-53063-1.
5
Instability throughout the Saccharomyces cerevisiae genome resulting from Pms1 endonuclease deficiency.
Nucleic Acids Res. 2024 Sep 9;52(16):9574-9585. doi: 10.1093/nar/gkae616.
6
mutations provide an alternative mechanism for 5-FOA resistance in .
bioRxiv. 2024 Jun 5:2024.06.03.597250. doi: 10.1101/2024.06.03.597250.
8
Prospects of POLD1 in Human Cancers: A Review.
Cancers (Basel). 2023 Mar 22;15(6):1905. doi: 10.3390/cancers15061905.
9
Pif1 family helicases promote mutation avoidance during DNA replication.
Nucleic Acids Res. 2022 Dec 9;50(22):12844-12855. doi: 10.1093/nar/gkac1127.

本文引用的文献

1
Diversity and evolution of B-family DNA polymerases.
Nucleic Acids Res. 2020 Oct 9;48(18):10142-10156. doi: 10.1093/nar/gkaa760.
2
Spontaneous Polyploids and Antimutators Compete During the Evolution of Mutator Cells.
Genetics. 2020 Aug;215(4):959-974. doi: 10.1534/genetics.120.303333. Epub 2020 Jun 8.
3
Reconstitution of translesion synthesis reveals a mechanism of eukaryotic DNA replication restart.
Nat Struct Mol Biol. 2020 May;27(5):450-460. doi: 10.1038/s41594-020-0418-4. Epub 2020 Apr 27.
4
DNA polymerase δ proofreads errors made by DNA polymerase ε.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6035-6041. doi: 10.1073/pnas.1917624117. Epub 2020 Mar 2.
5
DNA Polymerase Delta Synthesizes Both Strands during Break-Induced Replication.
Mol Cell. 2019 Nov 7;76(3):371-381.e4. doi: 10.1016/j.molcel.2019.07.033. Epub 2019 Sep 5.
6
Roles for DNA polymerase δ in initiating and terminating leading strand DNA replication.
Nat Commun. 2019 Sep 5;10(1):3992. doi: 10.1038/s41467-019-11995-z.
8
A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme.
Nat Commun. 2019 Jan 22;10(1):374. doi: 10.1038/s41467-018-08145-2.
9
RNase HIII Is Important for Okazaki Fragment Processing in .
J Bacteriol. 2019 Mar 13;201(7). doi: 10.1128/JB.00686-18. Print 2019 Apr 1.
10
Muver, a computational framework for accurately calling accumulated mutations.
BMC Genomics. 2018 May 9;19(1):345. doi: 10.1186/s12864-018-4753-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验