Suppr超能文献

后生动物预靶向 GET 复合物的结构见解。

Structural insights into metazoan pretargeting GET complexes.

机构信息

Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA, USA.

Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.

出版信息

Nat Struct Mol Biol. 2021 Dec;28(12):1029-1037. doi: 10.1038/s41594-021-00690-7. Epub 2021 Dec 9.

Abstract

Close coordination between chaperones is essential for protein biosynthesis, including the delivery of tail-anchored (TA) proteins containing a single C-terminal transmembrane domain to the endoplasmic reticulum (ER) by the conserved GET pathway. For successful targeting, nascent TA proteins must be promptly chaperoned and loaded onto the cytosolic ATPase Get3 through a transfer reaction involving the chaperone SGTA and bridging factors Get4, Ubl4a and Bag6. Here, we report cryo-electron microscopy structures of metazoan pretargeting GET complexes at 3.3-3.6 Å. The structures reveal that Get3 helix 8 and the Get4 C terminus form a composite lid over the Get3 substrate-binding chamber that is opened by SGTA. Another interaction with Get4 prevents formation of Get3 helix 4, which links the substrate chamber and ATPase domain. Both interactions facilitate TA protein transfer from SGTA to Get3. Our findings show how the pretargeting complex primes Get3 for coordinated client loading and ER targeting.

摘要

伴侣蛋白之间的密切协调对于蛋白质生物合成至关重要,包括通过保守的 GET 途径将含有单个 C 末端跨膜结构域的尾部锚定 (TA) 蛋白递送至内质网 (ER)。为了成功靶向,新生 TA 蛋白必须通过涉及伴侣蛋白 SGTA 和桥接因子 Get4、Ubl4a 和 Bag6 的转移反应及时伴侣并加载到细胞质 ATP 酶 Get3 上。在这里,我们报道了后生动物前靶向 GET 复合物在 3.3-3.6Å 的冷冻电镜结构。这些结构表明,Get3 螺旋 8 和 Get4 C 末端形成一个复合盖,覆盖 Get3 的底物结合腔,该腔由 SGTA 打开。与 Get4 的另一个相互作用阻止了 Get3 螺旋 4 的形成,该螺旋将底物腔和 ATP 酶结构域连接起来。这两种相互作用都促进了 TA 蛋白从 SGTA 转移到 Get3。我们的发现表明了前靶向复合物如何使 Get3 为协调的客户加载和 ER 靶向做好准备。

相似文献

1
Structural insights into metazoan pretargeting GET complexes.
Nat Struct Mol Biol. 2021 Dec;28(12):1029-1037. doi: 10.1038/s41594-021-00690-7. Epub 2021 Dec 9.
2
Mechanism of Assembly of a Substrate Transfer Complex during Tail-anchored Protein Targeting.
J Biol Chem. 2015 Dec 11;290(50):30006-17. doi: 10.1074/jbc.M115.677328. Epub 2015 Oct 7.
3
A protean clamp guides membrane targeting of tail-anchored proteins.
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8585-E8594. doi: 10.1073/pnas.1708731114. Epub 2017 Sep 26.
4
A Chaperone Lid Ensures Efficient and Privileged Client Transfer during Tail-Anchored Protein Targeting.
Cell Rep. 2019 Jan 2;26(1):37-44.e7. doi: 10.1016/j.celrep.2018.12.035.
5
The natural history of Get3-like chaperones.
Traffic. 2019 May;20(5):311-324. doi: 10.1111/tra.12643.
7
CAMLG-CDG: a novel congenital disorder of glycosylation linked to defective membrane trafficking.
Hum Mol Genet. 2022 Aug 17;31(15):2571-2581. doi: 10.1093/hmg/ddac055.
9
The mechanism of tail-anchored protein insertion into the ER membrane.
Mol Cell. 2011 Sep 2;43(5):738-50. doi: 10.1016/j.molcel.2011.07.020. Epub 2011 Aug 11.
10

引用本文的文献

2
A dual role of the conserved PEX19 helix in safeguarding peroxisomal membrane proteins.
iScience. 2024 Mar 18;27(4):109537. doi: 10.1016/j.isci.2024.109537. eCollection 2024 Apr 19.
3
Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad.
Nat Commun. 2024 Jan 2;15(1):134. doi: 10.1038/s41467-023-44260-5.
4
The GET insertase exhibits conformational plasticity and induces membrane thinning.
Nat Commun. 2023 Nov 14;14(1):7355. doi: 10.1038/s41467-023-42867-2.
6
A TAle of Two Pathways: Tail-Anchored Protein Insertion at the Endoplasmic Reticulum.
Cold Spring Harb Perspect Biol. 2023 Mar 1;15(3):a041252. doi: 10.1101/cshperspect.a041252.
7
The Endoplasmic Reticulum and the Fidelity of Nascent Protein Localization.
Cold Spring Harb Perspect Biol. 2023 Mar 1;15(3):a041249. doi: 10.1101/cshperspect.a041249.
8
Structurally derived universal mechanism for the catalytic cycle of the tail-anchored targeting factor Get3.
Nat Struct Mol Biol. 2022 Aug;29(8):820-830. doi: 10.1038/s41594-022-00798-4. Epub 2022 Jul 18.

本文引用的文献

1
Molecular basis of tail-anchored integral membrane protein recognition by the cochaperone Sgt2.
J Biol Chem. 2021 Jan-Jun;296:100441. doi: 10.1016/j.jbc.2021.100441. Epub 2021 Feb 19.
2
The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase.
Science. 2020 Sep 25;369(6511). doi: 10.1126/science.abc5809.
3
Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex.
Mol Cell. 2020 Oct 1;80(1):72-86.e7. doi: 10.1016/j.molcel.2020.08.012. Epub 2020 Sep 9.
4
UCSF ChimeraX: Structure visualization for researchers, educators, and developers.
Protein Sci. 2021 Jan;30(1):70-82. doi: 10.1002/pro.3943. Epub 2020 Oct 22.
6
The Hsp70 chaperone network.
Nat Rev Mol Cell Biol. 2019 Nov;20(11):665-680. doi: 10.1038/s41580-019-0133-3.
7
The PSIPRED Protein Analysis Workbench: 20 years on.
Nucleic Acids Res. 2019 Jul 2;47(W1):W402-W407. doi: 10.1093/nar/gkz297.
8
SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM.
Commun Biol. 2019 Jun 19;2:218. doi: 10.1038/s42003-019-0437-z. eCollection 2019.
9
The Chaperonin TRiC/CCT Associates with Prefoldin through a Conserved Electrostatic Interface Essential for Cellular Proteostasis.
Cell. 2019 Apr 18;177(3):751-765.e15. doi: 10.1016/j.cell.2019.03.012. Epub 2019 Apr 4.
10
A Chaperone Lid Ensures Efficient and Privileged Client Transfer during Tail-Anchored Protein Targeting.
Cell Rep. 2019 Jan 2;26(1):37-44.e7. doi: 10.1016/j.celrep.2018.12.035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验