文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脊髓实质血管再分布是脊髓型颈椎病患者动态颈部姿势下血流动力学和神经生理学变化的基础。

Spinal Cord Parenchyma Vascular Redistribution Underlies Hemodynamic and Neurophysiological Changes at Dynamic Neck Positions in Cervical Spondylotic Myelopathy.

作者信息

Yu Zhengran, Cheng Xing, Chen Jiacheng, Huang Zhong, He Shaofu, Hu Hao, Lin Sixiong, Zou Zhiyuan, Huang Fangli, Chen Bolin, Wan Yong, Peng Xinsheng, Zou Xuenong

机构信息

Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.

出版信息

Front Neuroanat. 2021 Nov 23;15:729482. doi: 10.3389/fnana.2021.729482. eCollection 2021.


DOI:10.3389/fnana.2021.729482
PMID:34887731
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8650056/
Abstract

Cervical spondylotic myelopathy (CSM) is a degenerative condition of the spine that caused by static and dynamic compression of the spinal cord. However, the mechanisms of motor and somatosensory conduction, as well as pathophysiological changes at dynamic neck positions remain unclear. This study aims to investigate the interplay between neurophysiological and hemodynamic responses at dynamic neck positions in the CSM condition, and the pathological basis behind. We first demonstrated that CSM patients had more severe dynamic motor evoked potentials (DMEPs) deteriorations upon neck flexion than upon extension, while their dynamic somatosensory evoked potentials (DSSEPs) deteriorated to a similar degree upon extension and flexion. We therefore generated a CSM rat model which developed similar neurophysiological characteristics within a 4-week compression period. At 4 weeks-post-injury, these rats presented decreased spinal cord blood flow (SCBF) and oxygen saturation (SO) at the compression site, especially upon cervical flexion. The dynamic change of DMEPs was significantly correlated with the change in SCBF from neutral to flexion, suggesting they were more sensitive to ischemia compared to DSSEPs. We further demonstrated significant vascular redistribution in the spinal cord parenchyma, caused by angiogenesis mainly concentrated in the anterior part of the compressed site. In addition, the comparative ratio of vascular densities at the anterior and posterior parts of the cord was significantly correlated with the perfusion decrease at neck flexion. This exploratory study revealed that the motor and somatosensory conductive functions of the cervical cord changed differently at dynamic neck positions in CSM conditions. Compared with somatosensory conduction, the motor conductive function of the cervical cord suffered more severe deteriorations upon cervical flexion, which could partly be attributed to its higher susceptibility to spinal cord ischemia. The uneven angiogenesis and vascular distribution in the spinal cord parenchyma might underlie the transient ischemia of the cord at flexion.

摘要

脊髓型颈椎病(CSM)是一种脊柱退行性疾病,由脊髓的静态和动态压迫引起。然而,运动和躯体感觉传导机制以及颈部动态位置的病理生理变化仍不清楚。本研究旨在探讨CSM患者在颈部动态位置时神经生理和血流动力学反应之间的相互作用及其背后的病理基础。我们首先证明,CSM患者颈部屈曲时动态运动诱发电位(DMEP)的恶化比伸展时更严重,而其动态躯体感觉诱发电位(DSSEP)在伸展和屈曲时恶化程度相似。因此,我们建立了一个CSM大鼠模型,该模型在4周的压迫期内产生了相似的神经生理特征。损伤后4周,这些大鼠在压迫部位出现脊髓血流量(SCBF)和氧饱和度(SO)降低,尤其是在颈部屈曲时。DMEP的动态变化与从中立位到屈曲位的SCBF变化显著相关,表明它们比DSSEP对缺血更敏感。我们进一步证明,脊髓实质内存在显著的血管再分布,这是由主要集中在受压部位前部的血管生成引起的。此外,脊髓前后部血管密度的比较比率与颈部屈曲时的灌注减少显著相关。这项探索性研究表明,在CSM情况下,颈部动态位置时颈髓的运动和躯体感觉传导功能变化不同。与躯体感觉传导相比,颈髓的运动传导功能在颈部屈曲时恶化更严重,这可能部分归因于其对脊髓缺血的更高易感性。脊髓实质内血管生成和血管分布不均可能是屈曲时脊髓短暂缺血的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/53f36d7e08fb/fnana-15-729482-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/3761f4011b67/fnana-15-729482-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/22f7447f8f3c/fnana-15-729482-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/015731d14635/fnana-15-729482-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/a2ec03a58ef5/fnana-15-729482-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/88ecf6f3a923/fnana-15-729482-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/93868e02232e/fnana-15-729482-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/4eb19cdd14b0/fnana-15-729482-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/303c5f5060e8/fnana-15-729482-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/53f36d7e08fb/fnana-15-729482-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/3761f4011b67/fnana-15-729482-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/22f7447f8f3c/fnana-15-729482-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/015731d14635/fnana-15-729482-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/a2ec03a58ef5/fnana-15-729482-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/88ecf6f3a923/fnana-15-729482-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/93868e02232e/fnana-15-729482-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/4eb19cdd14b0/fnana-15-729482-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/303c5f5060e8/fnana-15-729482-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ac/8650056/53f36d7e08fb/fnana-15-729482-g009.jpg

相似文献

[1]
Spinal Cord Parenchyma Vascular Redistribution Underlies Hemodynamic and Neurophysiological Changes at Dynamic Neck Positions in Cervical Spondylotic Myelopathy.

Front Neuroanat. 2021-11-23

[2]
Preoperative evaluation of the cervical spondylotic myelopathy with flexion-extension magnetic resonance imaging: about a prospective study of fifty patients.

Spine (Phila Pa 1976). 2011-8-1

[3]
Impact of dynamic alignment, motion, and center of rotation on myelopathy grade and regional disability in cervical spondylotic myelopathy.

J Neurosurg Spine. 2015-12

[4]
[Influence of Cervical Spondylotic Spinal Cord Compression on Cerebral Cortical Adaptation. Radiological Study].

Acta Chir Orthop Traumatol Cech. 2015

[5]
A New Diagnostic Medium for Cervical Spondylotic Myelopathy: Dynamic Somatosensory Evoked Potentials.

World Neurosurg. 2019-9-4

[6]
Magnetic resonance imaging and dynamic X-ray's correlations with dynamic electrophysiological findings in cervical spondylotic myelopathy: a retrospective cohort study.

BMC Neurol. 2020-10-6

[7]
Hirayama disease: three cases assessed by F wave, somatosensory and motor evoked potentials and magnetic resonance imaging not supporting flexion myelopathy.

Neurol Sci. 2008-10

[8]
Increased spinal cord movements in cervical spondylotic myelopathy.

Spine J. 2014-10-1

[9]
Dynamic somatosensory evoked potentials to determine electrophysiological effects on the spinal cord during cervical spine extension: clinical article.

J Neurosurg Spine. 2013-7-12

[10]
Diagnostic Role of Flexion-extension Central Motor Conduction Time in Cervical Spondylotic Myelopathy.

Spine (Phila Pa 1976). 2021-11-15

引用本文的文献

[1]
Positive effect of microvascular proliferation on functional recovery in experimental cervical spondylotic myelopathy.

Front Neurosci. 2024-3-6

[2]
Cilostazol protects against degenerative cervical myelopathy injury and cell pyroptosis via TXNIP-NLRP3 pathway.

Cell Div. 2024-1-17

[3]
The ferroptosis activity is associated with neurological recovery following chronic compressive spinal cord injury.

Neural Regen Res. 2023-11

[4]
Pathophysiological mechanisms of chronic compressive spinal cord injury due to vascular events.

Neural Regen Res. 2023-4

[5]
Low-Intensity Focused Ultrasound Alleviates Spasticity and Increases Expression of the Neuronal K-Cl Cotransporter in the L4-L5 Sections of Rats Following Spinal Cord Injury.

Front Cell Neurosci. 2022-5-12

本文引用的文献

[1]
Pathophysiological Changes and the Role of Notch-1 Activation After Decompression in a Compressive Spinal Cord Injury Rat Model.

Front Neurosci. 2021-1-28

[2]
Magnetic resonance imaging and dynamic X-ray's correlations with dynamic electrophysiological findings in cervical spondylotic myelopathy: a retrospective cohort study.

BMC Neurol. 2020-10-6

[3]
Microvascular density assessed by CD31 predicts clinical benefit upon bevacizumab treatment in metastatic colorectal cancer: results of the PassionATE study, a translational prospective Phase II study of capecitabine and irinotecan plus bevacizumab followed by capecitabine and oxaliplatin plus bevacizumab or the reverse sequence in patients in mCRC.

Ther Adv Med Oncol. 2020-8-18

[4]
LncRNA Xist Contributes to Endogenous Neurological Repair After Chronic Compressive Spinal Cord Injury by Promoting Angiogenesis Through the miR-32-5p/Notch-1 Axis.

Front Cell Dev Biol. 2020-8-6

[5]
Degenerative cervical myelopathy: Diagnosis and management in primary care.

Can Fam Physician. 2019-9

[6]
A New Diagnostic Medium for Cervical Spondylotic Myelopathy: Dynamic Somatosensory Evoked Potentials.

World Neurosurg. 2019-9-4

[7]
The correlation between hypoxia-inducible factor-1α, matrix metalloproteinase-9 and functional recovery following chronic spinal cord compression.

Brain Res. 2019-5-2

[8]
Using Laser Doppler Imaging and Monitoring to Analyze Spinal Cord Microcirculation in Rat.

J Vis Exp. 2018-5-30

[9]
Ultrastructural Features of Neurovascular Units in a Rat Model of Chronic Compressive Spinal Cord Injury.

Front Neuroanat. 2018-1-10

[10]
Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy.

Acta Neuropathol Commun. 2016-8-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索