Suppr超能文献

在纸基微流控苯丙氨酸测试背景下,用于合理设计多步处理的多孔材料表征方法。

Characterization methods in porous materials for the rational design of multi-step processing in the context of a paper microfluidic phenylalanine test.

作者信息

Wentland Lael, Polaski Rachel, Fu Elain

机构信息

School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331.

出版信息

Anal Methods. 2020 Feb 14;12(6):768-780. doi: 10.1039/c9ay02500f. Epub 2020 Jan 23.

Abstract

A promising application of paper microfluidics is the translation of gold-standard multi-step laboratory tests to a disposable paper-based format for decentralized diagnostic or therapeutic testing. This often entails conversion of bench-top processing of macro-volume samples to the processing of micro-volume samples within a porous matrix, and requires detailed characterization of fluid and reagent interactions within the porous material(s) of the device. The current study focuses on rational device design through the characterization of fluid and reagent interactions in polysulfone and glass fiber substrates for multi-step sample processing. Specifically, we demonstrate how the characterization of fluidic compatibility between substrates, chemical compatibility between reagents and substrates, sample pH, and sample transport can be used to inform device design in the context of a two-reaction detection scheme for phenylalanine in porous materials. Finally, we demonstrate detection of phenylalanine from human whole blood, and discuss the multiple strengths of the current design over a previous version.

摘要

纸基微流控技术一个很有前景的应用是将金标准的多步骤实验室检测转化为用于分散式诊断或治疗检测的一次性纸质形式。这通常需要将大体积样本的台式处理转换为在多孔基质内对微体积样本的处理,并且需要详细表征设备多孔材料内流体与试剂的相互作用。当前的研究通过表征聚砜和玻璃纤维基质中流体与试剂的相互作用,以实现多步骤样本处理的合理设备设计。具体而言,我们展示了如何在多孔材料中苯丙氨酸的双反应检测方案背景下,利用基质之间流体兼容性、试剂与基质之间化学兼容性、样本pH值以及样本传输的表征来指导设备设计。最后,我们展示了从人类全血中检测苯丙氨酸的方法,并讨论了当前设计相对于先前版本的多个优点。

相似文献

2
Dry storage of multiple reagent types within a paper microfluidic device for phenylalanine monitoring.
Anal Methods. 2021 Feb 7;13(5):660-671. doi: 10.1039/d0ay02043e. Epub 2021 Jan 19.
3
A hybrid paper and microfluidic chip with electrowetting valves and colorimetric detection.
Analyst. 2014 Jun 21;139(12):3002-8. doi: 10.1039/c3an01516e.
4
Progress toward multiplexed sample-to-result detection in low resource settings using microfluidic immunoassay cards.
Lab Chip. 2012 Mar 21;12(6):1119-27. doi: 10.1039/c2lc20751f. Epub 2012 Feb 7.
6
Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery.
ACS Sens. 2021 Jan 22;6(1):91-99. doi: 10.1021/acssensors.0c01840. Epub 2020 Dec 31.
7
Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
Sensors (Basel). 2021 Nov 11;21(22):7493. doi: 10.3390/s21227493.
8
Integrated sample-to-detection chip for nucleic acid test assays.
Biomed Microdevices. 2016 Jun;18(3):44. doi: 10.1007/s10544-016-0069-8.
9
Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
Lab Chip. 2007 Nov;7(11):1497-503. doi: 10.1039/b708187a. Epub 2007 Aug 15.
10
Materials for microfluidic chip fabrication.
Acc Chem Res. 2013 Nov 19;46(11):2396-406. doi: 10.1021/ar300314s. Epub 2013 Jun 11.

引用本文的文献

1
Lab-on-paper diagnostics for blood sample analysis: a review.
Mikrochim Acta. 2025 Jul 2;192(8):467. doi: 10.1007/s00604-025-07303-w.
3
Dry storage of multiple reagent types within a paper microfluidic device for phenylalanine monitoring.
Anal Methods. 2021 Feb 7;13(5):660-671. doi: 10.1039/d0ay02043e. Epub 2021 Jan 19.

本文引用的文献

2
Semisynthetic sensor proteins enable metabolic assays at the point of care.
Science. 2018 Sep 14;361(6407):1122-1126. doi: 10.1126/science.aat7992.
3
Experimental Measurement of Parameters Governing Flow Rates and Partial Saturation in Paper-Based Microfluidic Devices.
Langmuir. 2018 Jul 31;34(30):8758-8766. doi: 10.1021/acs.langmuir.8b01345. Epub 2018 Jul 18.
4
Design considerations for reducing sample loss in microfluidic paper-based analytical devices.
Anal Chim Acta. 2018 Aug 9;1017:20-25. doi: 10.1016/j.aca.2018.01.036. Epub 2018 Feb 3.
5
Quantitative evaluation of analyte transport on microfluidic paper-based analytical devices (μPADs).
Analyst. 2018 Feb 7;143(3):643-653. doi: 10.1039/c7an01702b. Epub 2017 Nov 29.
6
Disposable Autonomous Device for Swab-to-Result Diagnosis of Influenza.
Anal Chem. 2017 Jun 6;89(11):5776-5783. doi: 10.1021/acs.analchem.6b04801. Epub 2017 May 8.
7
A rapid, instrument-free, sample-to-result nucleic acid amplification test.
Lab Chip. 2016 Oct 7;16(19):3777-87. doi: 10.1039/c6lc00677a. Epub 2016 Aug 23.
8
Phenylketonuria: a review of current and future treatments.
Transl Pediatr. 2015 Oct;4(4):304-17. doi: 10.3978/j.issn.2224-4336.2015.10.07.
9
Raman Characterization of Nanoparticle Transport in Microfluidic Paper-Based Analytical Devices (μPADs).
ACS Appl Mater Interfaces. 2015 May 6;7(17):9139-46. doi: 10.1021/acsami.5b01192. Epub 2015 Apr 22.
10
Rational design of capillary-driven flows for paper-based microfluidics.
Lab Chip. 2015 May 21;15(10):2173-80. doi: 10.1039/c4lc01487a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验