Synthetic Biology and Biosystems Control Lab, I.U. de Automática e Informática Industrial (ai2), Universitat Politècnica de Valencia, Valencia, Spain.
Centro Universitario EDEM, Escuela de Empresarios, La Marina de València, Valencia, Spain.
Methods Mol Biol. 2022;2385:65-89. doi: 10.1007/978-1-0716-1767-0_4.
Semi-mechanistic kinetic (i.e., dynamic) models based on first principles are particularly relevant in biology, as they can explain and predict functional behavior that arises from varying concentrations of the cellular components over time. Here, we describe a computational tuning framework to facilitate both the selection of kinetic parameters for these models and its estimation from experimental data. On the one hand, the tuning framework uses multi-objective optimization to generate a model-based set of guidelines for the selection of the kinetic parameters. These parameter values are the required ones to provide a biological system with desired behavior, while fulfilling the design criteria encoded in the optimization problem itself. On the other hand, this framework can also be used to estimate the parameter values of biological systems from experimental data, once the optimization objectives had been defined appropriately. The methodology gives accurate identification results, as it provides clear orientation on the effect of the parameter values over the system's behavior even under different experimental scenarios. It is particularly useful for easily combining time-course-averaged data and steady-state distribution data. This protocol also addresses aspects related to the appropriate description of the kinetic models and the settings of the software tools. Therefore, it supplies for hands-on testing to evaluate the validity of the underlying technical assumptions of the biological kinetic models.
基于第一原理的半机械动力学(即动态)模型在生物学中尤为相关,因为它们可以解释和预测随时间变化的细胞成分浓度所产生的功能行为。在这里,我们描述了一个计算调整框架,以方便这些模型的动力学参数的选择及其从实验数据中的估计。一方面,调整框架使用多目标优化来生成基于模型的一组指南,用于选择动力学参数。这些参数值是为生物系统提供所需行为所需的,同时满足优化问题本身中编码的设计标准。另一方面,一旦适当定义了优化目标,该框架也可用于从实验数据中估计生物系统的参数值。该方法提供了准确的识别结果,因为它即使在不同的实验场景下,也能清楚地说明参数值对系统行为的影响。它对于容易结合时程平均数据和稳态分布数据特别有用。该方案还涉及与动力学模型的适当描述和软件工具设置相关的方面。因此,它提供了实际测试,以评估生物动力学模型的基本技术假设的有效性。