Suppr超能文献

MLAGO:用于米氏常数估计的机器学习辅助全局优化的动力学建模。

MLAGO: machine learning-aided global optimization for Michaelis constant estimation of kinetic modeling.

机构信息

Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan.

Department of Molecular Cell Biology, Faculty of Science, VU University Amsterdam, O|2 Building, Amsterdam, The Netherlands.

出版信息

BMC Bioinformatics. 2022 Nov 1;23(1):455. doi: 10.1186/s12859-022-05009-x.

Abstract

BACKGROUND

Kinetic modeling is a powerful tool for understanding the dynamic behavior of biochemical systems. For kinetic modeling, determination of a number of kinetic parameters, such as the Michaelis constant (K), is necessary, and global optimization algorithms have long been used for parameter estimation. However, the conventional global optimization approach has three problems: (i) It is computationally demanding. (ii) It often yields unrealistic parameter values because it simply seeks a better model fitting to experimentally observed behaviors. (iii) It has difficulty in identifying a unique solution because multiple parameter sets can allow a kinetic model to fit experimental data equally well (the non-identifiability problem).

RESULTS

To solve these problems, we propose the Machine Learning-Aided Global Optimization (MLAGO) method for K estimation of kinetic modeling. First, we use a machine learning-based K predictor based only on three factors: EC number, KEGG Compound ID, and Organism ID, then conduct a constrained global optimization-based parameter estimation by using the machine learning-predicted K values as the reference values. The machine learning model achieved relatively good prediction scores: RMSE = 0.795 and R = 0.536, making the subsequent global optimization easy and practical. The MLAGO approach reduced the error between simulation and experimental data while keeping K values close to the machine learning-predicted values. As a result, the MLAGO approach successfully estimated K values with less computational cost than the conventional method. Moreover, the MLAGO approach uniquely estimated K values, which were close to the measured values.

CONCLUSIONS

MLAGO overcomes the major problems in parameter estimation, accelerates kinetic modeling, and thus ultimately leads to better understanding of complex cellular systems. The web application for our machine learning-based K predictor is accessible at https://sites.google.com/view/kazuhiro-maeda/software-tools-web-apps , which helps modelers perform MLAGO on their own parameter estimation tasks.

摘要

背景

动力学建模是理解生化系统动态行为的有力工具。对于动力学建模,需要确定许多动力学参数,如米氏常数(K),长期以来一直使用全局优化算法进行参数估计。然而,传统的全局优化方法有三个问题:(i)计算量大。(ii)由于它只是简单地寻求更好的模型拟合实验观察到的行为,因此经常产生不现实的参数值。(iii)由于多个参数集可以使动力学模型同样拟合实验数据(不可识别性问题),因此很难确定唯一的解决方案。

结果

为了解决这些问题,我们提出了用于动力学建模 K 估计的机器学习辅助全局优化(MLAGO)方法。首先,我们仅使用三个因素:EC 编号、KEGG 化合物 ID 和生物 ID,基于机器学习的 K 预测器,然后通过使用机器学习预测的 K 值作为参考值进行基于约束的全局优化参数估计。机器学习模型实现了相对较好的预测得分:RMSE=0.795 和 R=0.536,使得后续的全局优化变得简单而实用。MLAGO 方法减少了模拟与实验数据之间的误差,同时使 K 值保持在机器学习预测值附近。因此,与传统方法相比,MLAGO 方法成功地以较少的计算成本估计 K 值。此外,MLAGO 方法独特地估计了接近测量值的 K 值。

结论

MLAGO 克服了参数估计中的主要问题,加速了动力学建模,从而最终有助于更好地理解复杂的细胞系统。我们基于机器学习的 K 预测器的网络应用程序可在 https://sites.google.com/view/kazuhiro-maeda/software-tools-web-apps 访问,它可以帮助建模人员在自己的参数估计任务上执行 MLAGO。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52e4/9624028/e1ff3363f1e7/12859_2022_5009_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验