Department of Orthopedic Surgery, Inova Health System, Fairfax, Virginia, USA.
Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
Am J Sports Med. 2022 Apr;50(5):1375-1381. doi: 10.1177/03635465211054475. Epub 2021 Dec 10.
Current techniques for ulnar collateral ligament (UCL) reconstruction do not reproduce the anatomic ulnar footprint of the UCL. The purpose of this study was to describe a novel UCL reconstruction technique that utilizes proximal-to-distal ulnar bone tunnels to better re-create the anatomy of the UCL and to compare the biomechanical profile at time zero among this technique, the native UCL, and the traditional docking technique.
The biomechanical profile of the anatomic technique is similar to the native UCL and traditional docking technique.
Controlled laboratory study.
Ten matched cadaveric elbows were potted with the forearm in neutral rotation. The palmaris longus tendon graft was harvested, and bones were sectioned 14 cm proximal and distal to the elbow joint. Specimen testing included (1) native UCL testing performed at 90° of flexion with 0.5 N·m of valgus moment preload, (2) cyclic loading from 0.5 to 5 N·m of valgus moment for 1000 cycles at 1 Hz, and (3) load to failure at 0.2 mm/s. Elbows then underwent UCL reconstruction with 1 elbow of each pair receiving the classic docking technique using either anatomic (proximal to distal) or traditional (anterior to posterior) tunnel locations. Specimen testing was then repeated as described.
There were no differences in maximum load at failure between the anatomic and traditional tunnel location techniques (mean ± SD, 34.90 ± 10.65 vs 37.28 ± 14.26 N·m; = .644) or when including the native UCL (45.83 ± 17.03 N·m; = .099). Additionally, there were no differences in valgus angle after 1000 cycles across the anatomic technique (4.58°± 1.47°), traditional technique (4.08°± 1.28°), and native UCL (4.07°± 1.99°). The anatomic group and the native UCL had similar valgus angles at failure (24.13°± 5.86° vs 20.13°± 5.70°; = .083), while the traditional group had a higher valgus angle at failure when compared with the native UCL (24.88°± 6.18° vs 19.44°± 5.86°; = .015).
In this cadaveric model, UCL reconstruction with the docking technique utilizing proximal-to-distal ulnar tunnels better restored the ulnar footprint while providing valgus stability comparable with reconstruction with the docking technique using traditional anterior-to-posterior ulnar tunnel locations. These results suggest that utilization of the anatomic tunnel location in UCL reconstruction has similar biomechanical properties to the traditional method at the time of initial fixation (ie, not accounting for healing after reconstruction in vivo) while keeping the ulnar tunnels farther from the ulnar nerve. Further studies are warranted to determine if an anatomically based UCL reconstruction results in differing outcomes than traditional reconstruction techniques.
Current UCL reconstruction techniques do not accurately re-create the ulnar UCL footprint. The UCL is a dynamic constraint to valgus loads at the elbow, and a more anatomic reconstruction may afford more natural joint kinematics. This more anatomic technique performs similarly to the traditional docking technique at time zero, and the results of this study may offer a starting point for future in vivo studies.
目前的 UCL 重建技术无法复制 UCL 的解剖学上的尺骨附着点。本研究旨在描述一种新的 UCL 重建技术,该技术利用近端到远端的尺骨隧道,更好地重建 UCL 的解剖结构,并比较该技术、自然 UCL 和传统对接技术在零时刻的生物力学特征。
解剖技术的生物力学特征与自然 UCL 和传统对接技术相似。
对照实验室研究。
将 10 个匹配的尸体肘部在中立旋转位置用盆固定。采集掌长肌腱移植物,将骨骼在距肘部 14cm 处进行近端和远端的分段。标本测试包括:(1)在 90°弯曲时进行自然 UCL 测试,施加 0.5 N·m 的外翻力矩预加载;(2)在 1Hz 下进行 0.5 到 5 N·m 的循环加载 1000 次;(3)以 0.2mm/s 的速度进行失效负载测试。然后使用经典的对接技术(解剖学上的近端到远端或传统的前到后隧道位置)对每个配对的肘部进行 UCL 重建。然后重复描述的测试。
在解剖和传统隧道位置技术之间,失效时的最大负载没有差异(平均 ± SD,34.90 ± 10.65 与 37.28 ± 14.26 N·m; =.644),或者当包括自然 UCL 时(45.83 ± 17.03 N·m; =.099)。此外,在经过 1000 次循环后,解剖技术(4.58°± 1.47°)、传统技术(4.08°± 1.28°)和自然 UCL(4.07°± 1.99°)之间的外翻角度没有差异。解剖组和自然 UCL 在失效时的外翻角度相似(24.13°± 5.86°与 20.13°± 5.70°; =.083),而传统组在失效时的外翻角度高于自然 UCL(24.88°± 6.18°与 19.44°± 5.86°; =.015)。
在这个尸体模型中,使用对接技术进行 UCL 重建,利用近端到远端的尺骨隧道,可以更好地恢复尺骨附着点,同时提供与使用传统前到后尺骨隧道位置的对接技术相当的外翻稳定性。这些结果表明,在 UCL 重建中使用解剖隧道位置在初始固定时具有与传统方法相似的生物力学特性(即,不考虑重建后在体内的愈合),同时使尺骨隧道远离尺神经。需要进一步的研究来确定解剖学上的 UCL 重建是否会导致与传统重建技术不同的结果。
目前的 UCL 重建技术无法准确地重建 UCL 的尺骨附着点。UCL 是肘部外翻负荷的动态约束,更具解剖学的重建可能提供更自然的关节运动学。这种更具解剖学的技术在零时刻与传统对接技术表现相似,本研究的结果可能为未来的体内研究提供一个起点。