Wennmann Markus, Murray Jacob M
Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland.
Universität Heidelberg, Heidelberg, Deutschland.
Radiologe. 2022 Jan;62(1):44-50. doi: 10.1007/s00117-021-00940-1. Epub 2021 Dec 10.
CLINICAL/METHODICAL ISSUE: Multiple myeloma can affect the complete skeleton, which makes whole-body imaging necessary. With the current assessment of these complex datasets by radiologists, only a small part of the accessible information is assessed and reported.
Depending on the question and availability, computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) is performed and the results are then visually examined by radiologists.
A combination of automatic skeletal segmentation using artificial intelligence and subsequent radiomics analysis of each individual bone have the potential to provide automatic, comprehensive, and objective skeletal analyses.
A few automatic skeletal segmentation algorithms for CT already show promising results. In addition, first studies indicate correlations between radiomics features of bone and bone marrow with established disease markers and therapy response.
Artificial intelligence (AI) and radiomics algorithms for automatic skeletal analysis from whole-body imaging are currently in an early phase of development.
临床/方法学问题:多发性骨髓瘤可累及整个骨骼,因此全身成像很有必要。在放射科医生目前对这些复杂数据集的评估中,只有一小部分可获取的信息得到评估和报告。
根据问题和可及性,进行计算机断层扫描(CT)、磁共振成像(MRI)或正电子发射断层扫描(PET),然后由放射科医生对结果进行视觉检查。
结合使用人工智能进行自动骨骼分割以及随后对每块骨骼进行放射组学分析,有可能提供自动、全面且客观的骨骼分析。
一些用于CT的自动骨骼分割算法已显示出有前景的结果。此外,初步研究表明骨骼和骨髓的放射组学特征与既定疾病标志物及治疗反应之间存在相关性。
用于从全身成像进行自动骨骼分析的人工智能(AI)和放射组学算法目前正处于早期开发阶段。