Suppr超能文献

深度学习与影像组学相结合实现全身 MRI 全自动、客观、全面的骨髓特征分析:一项多中心可行性研究。

Combining Deep Learning and Radiomics for Automated, Objective, Comprehensive Bone Marrow Characterization From Whole-Body MRI: A Multicentric Feasibility Study.

机构信息

From the Divisions of Radiology.

Medical Image Computing, German Cancer Research Center.

出版信息

Invest Radiol. 2022 Nov 1;57(11):752-763. doi: 10.1097/RLI.0000000000000891. Epub 2022 May 27.

Abstract

OBJECTIVES

Disseminated bone marrow (BM) involvement is frequent in multiple myeloma (MM). Whole-body magnetic resonance imaging (wb-MRI) enables to evaluate the whole BM. Reading of such whole-body scans is time-consuming, and yet radiologists can transfer only a small fraction of the information of the imaging data set to the report. This limits the influence that imaging can have on clinical decision-making and in research toward precision oncology. The objective of this feasibility study was to implement a concept for automatic, comprehensive characterization of the BM from wb-MRI, by automatic BM segmentation and subsequent radiomics analysis of 30 different BM spaces (BMS).

MATERIALS AND METHODS

This retrospective multicentric pilot study used a total of 106 wb-MRI from 102 patients with (smoldering) MM from 8 centers. Fifty wb-MRI from center 1 were used for training of segmentation algorithms (nnU-Nets) and radiomics algorithms. Fifty-six wb-MRI from 8 centers, acquired with a variety of different MRI scanners and protocols, were used for independent testing. Manual segmentations of 2700 BMS from 90 wb-MRI were performed for training and testing of the segmentation algorithms. For each BMS, 296 radiomics features were calculated individually. Dice score was used to assess similarity between automatic segmentations and manual reference segmentations.

RESULTS

The "multilabel nnU-Net" segmentation algorithm, which performs segmentation of 30 BMS and labels them individually, reached mean dice scores of 0.88 ± 0.06/0.87 ± 0.06/0.83 ± 0.11 in independent test sets from center 1/center 2/center 3-8 (interrater variability between radiologists, 0.88 ± 0.01). The subset from the multicenter, multivendor test set (center 3-8) that was of high imaging quality was segmented with high precision (mean dice score, 0.87), comparable to the internal test data from center 1. The radiomic BM phenotype consisting of 8880 descriptive parameters per patient, which result from calculation of 296 radiomics features for each of the 30 BMS, was calculated for all patients. Exemplary cases demonstrated connections between typical BM patterns in MM and radiomic signatures of the respective BMS. In plausibility tests, predicted size and weight based on radiomics models of the radiomic BM phenotype significantly correlated with patients' actual size and weight ( P = 0.002 and P = 0.003, respectively).

CONCLUSIONS

This pilot study demonstrates the feasibility of automatic, objective, comprehensive BM characterization from wb-MRI in multicentric data sets. This concept allows the extraction of high-dimensional phenotypes to capture the complexity of disseminated BM disorders from imaging. Further studies need to assess the clinical potential of this method for automatic staging, therapy response assessment, or prediction of biopsy results.

摘要

目的

多发性骨髓瘤(MM)常发生骨髓弥漫性(BM)受累。全身磁共振成像(wb-MRI)可用于评估整个 BM。阅读这种全身扫描非常耗时,而且放射科医生只能将成像数据集的一小部分信息传递到报告中。这限制了成像对临床决策和精准肿瘤学研究的影响。本可行性研究的目的是通过自动 BM 分割和随后对 30 个不同 BM 空间(BMS)的放射组学分析,实现对 wb-MRI 中 BM 的自动、全面特征描述的概念。

材料和方法

这项回顾性多中心试点研究共使用了来自 8 个中心的 102 名(冒烟型)MM 患者的 106 例 wb-MRI。来自中心 1 的 50 例 wb-MRI 用于分割算法(nnU-Nets)和放射组学算法的训练。来自 8 个中心的 56 例 wb-MRI ,采用各种不同的 MRI 扫描仪和协议采集,用于独立测试。为了训练和测试分割算法,对 90 例 wb-MRI 的 2700 个 BMS 进行了手动分割。为每个 BMS 单独计算了 296 个放射组学特征。Dice 评分用于评估自动分割与手动参考分割之间的相似性。

结果

在独立测试集(中心 1/中心 2/中心 3-8)中,对 30 个 BMS 进行分割并分别标记的“多标签 nnU-Net”分割算法达到了 0.88±0.06/0.87±0.06/0.83±0.11 的平均 Dice 评分(放射科医生之间的组内变异性,0.88±0.01)。来自多中心、多供应商测试集(中心 3-8)的高成像质量子集具有高精度的分割(平均 Dice 评分,0.87),与中心 1 的内部测试数据相当。从每个 30 个 BMS 中计算的 296 个放射组学特征得出的包含每个患者 8880 个描述性参数的放射组学 BM 表型,被计算用于所有患者。典型病例表明 MM 中典型的 BM 模式与各自 BMS 的放射组学特征之间存在联系。在可信度测试中,基于放射组学 BM 表型的放射组学模型预测的大小和重量与患者的实际大小和重量显著相关(P=0.002 和 P=0.003)。

结论

这项试点研究证明了在多中心数据集从 wb-MRI 进行自动、客观、全面的 BM 特征描述的可行性。该概念允许提取高维表型,以从影像学上捕获弥漫性 BM 疾病的复杂性。进一步的研究需要评估该方法在自动分期、治疗反应评估或预测活检结果方面的临床潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验