Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
Department of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Eur Radiol. 2021 Jun;31(6):4130-4137. doi: 10.1007/s00330-020-07493-2. Epub 2020 Nov 27.
To compare the DWI-Alberta Stroke Program Early Computed Tomography Score calculated by a deep learning-based automatic software tool (eDWI-ASPECTS) with the neuroradiologists' evaluation for the acute stroke, with emphasis on its performance on 10 individual ASPECTS regions, and to determine the reasons for inconsistencies between eDWI-ASPECTS and neuroradiologists' evaluation.
This retrospective study included patients with middle cerebral artery stroke who underwent MRI from 2010 to 2019. All scans were evaluated by eDWI-ASPECTS and two independent neuroradiologists (with 15 and 5 years of experience in stroke study). Inter-rater agreement and agreement between manual vs. automated methods for total and each region were evaluated by calculating Kendall's tau-b, intraclass correlation coefficient (ICC), and kappa coefficient.
In total, 309 patients met our study criteria. For total ASPECTS, eDWI-ASPECTS and manual raters had a strong positive correlation (Kendall's tau-b = 0.827 for junior raters vs. eDWI-ASPECTS; Kendall's tau-b = 0.870 for inter-raters; Kendall's tau-b = 0.848 for senior raters vs. eDWI-ASPECTS) and excellent agreement (ICC = 0.923 for junior raters and automated scores; ICC = 0.954 for inter-raters; ICC = 0.939 for senior raters and automated scores). Agreement was different for individual ASPECTS regions. All regions except for M5 region (κ = 0.216 for junior raters and automated scores), internal capsule (κ = 0.525 for junior raters and automated scores), and caudate (κ = 0.586 for senior raters and automated scores) showed good to excellent concordance.
The eDWI-ASPECTS performed equally well as senior neuroradiologists' evaluation, although interference by uncertain scoring rules and midline shift resulted in poor to moderate consistency in the M5, internal capsule, and caudate nucleus regions.
• The eDWI-ASPECTS based on deep learning perform equally well as senior neuroradiologists' evaluations. • Among the individual ASPECTS regions, the M5, internal capsule, and caudate regions mainly affected the overall consistency. • Uncertain scoring rules and midline shift are the main reasons for regional inconsistency.
比较基于深度学习的自动软件工具(eDWI-ASPECTS)计算的 DWI-Alberta 卒中程序早期 CT 评分与神经放射科医生对急性卒中的评估,重点关注其在 10 个单独 ASPECTS 区域的性能,并确定 eDWI-ASPECTS 与神经放射科医生评估之间不一致的原因。
本回顾性研究纳入了 2010 年至 2019 年接受 MRI 检查的大脑中动脉卒中患者。所有扫描均由 eDWI-ASPECTS 和两名独立的神经放射科医生(具有 15 年和 5 年卒中研究经验)进行评估。通过计算 Kendall's tau-b、组内相关系数(ICC)和kappa 系数,评估手动与自动方法之间的总评分和每个区域的评分的组内一致性和一致性。
共有 309 名患者符合我们的研究标准。对于总 ASPECTS,eDWI-ASPECTS 和手动评分者之间存在强烈的正相关(初级评分者与 eDWI-ASPECTS 的 Kendall's tau-b = 0.827;评分者之间的 Kendall's tau-b = 0.870;高级评分者与 eDWI-ASPECTS 的 Kendall's tau-b = 0.848)和极好的一致性(初级评分者和自动评分的 ICC = 0.923;评分者之间的 ICC = 0.954;高级评分者和自动评分的 ICC = 0.939)。对于个别 ASPECTS 区域,一致性不同。除了 M5 区域(初级评分者和自动评分的κ=0.216)、内囊(初级评分者和自动评分的κ=0.525)和尾状核(高级评分者和自动评分的κ=0.586)外,所有区域均显示出良好到极好的一致性。
eDWI-ASPECTS 的表现与高级神经放射科医生的评估一样好,尽管不确定的评分规则和中线移位导致 M5、内囊和尾状核区域的一致性较差。
• 基于深度学习的 eDWI-ASPECTS 与高级神经放射科医生的评估表现一样好。
• 在个别 ASPECTS 区域中,M5、内囊和尾状核区域主要影响整体一致性。
• 不确定的评分规则和中线移位是区域不一致的主要原因。