Suppr超能文献

Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field.

作者信息

Borgens R B, Blight A R, Murphy D J, Stewart L

出版信息

J Comp Neurol. 1986 Aug 8;250(2):168-80. doi: 10.1002/cne.902500204.

Abstract

Using an implanted battery and electrodes, we have imposed a weak, steady electrical field across partially severed guinea pig spinal cords. We have analyzed regeneration of dorsal column axons in experimental animals and sham-treated controls at 50-60 days postinjury by anterograde filling of these axons with the intracellular marker horseradish peroxidase and by employing a marking device to identify precisely the original plane of transection (J. Comp. Neurol. 250: 157-167, '86). In response to electric field applications, axons grew into the glial scar, as far as the plane of transection in most experimental animals. In a few animals axons could be traced around the margins of the lesion (but never through it). Moreover, these fibers returned to their approximate positions within the rostral spinal cord before turning toward the brain. In sham-treated controls, ascending axons were found to terminate caudal to the glial scar, and rarely were any fibers found within the scar itself. Axons were never observed to cross into the rostral cord segment. These findings suggest that an imposed electrical field promotes growth of axons within the partially severed mammalian spinal cord, that a steady voltage gradient may be an environmental component necessary for axonal development and regeneration, and that some component(s) of the scar impede or deflect axonal growth and projection.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验