Borgens R B, Blight A R, Murphy D J, Stewart L
J Comp Neurol. 1986 Aug 8;250(2):168-80. doi: 10.1002/cne.902500204.
Using an implanted battery and electrodes, we have imposed a weak, steady electrical field across partially severed guinea pig spinal cords. We have analyzed regeneration of dorsal column axons in experimental animals and sham-treated controls at 50-60 days postinjury by anterograde filling of these axons with the intracellular marker horseradish peroxidase and by employing a marking device to identify precisely the original plane of transection (J. Comp. Neurol. 250: 157-167, '86). In response to electric field applications, axons grew into the glial scar, as far as the plane of transection in most experimental animals. In a few animals axons could be traced around the margins of the lesion (but never through it). Moreover, these fibers returned to their approximate positions within the rostral spinal cord before turning toward the brain. In sham-treated controls, ascending axons were found to terminate caudal to the glial scar, and rarely were any fibers found within the scar itself. Axons were never observed to cross into the rostral cord segment. These findings suggest that an imposed electrical field promotes growth of axons within the partially severed mammalian spinal cord, that a steady voltage gradient may be an environmental component necessary for axonal development and regeneration, and that some component(s) of the scar impede or deflect axonal growth and projection.