Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States.
Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States.
ACS Appl Mater Interfaces. 2021 Dec 22;13(50):59618-59632. doi: 10.1021/acsami.1c13183. Epub 2021 Dec 10.
Proteinaceous nanoparticles can be used to deliver large payloads of active ingredients, which is advantageous in medicine and agriculture. However, the conjugation of hydrophobic ligands to hydrophilic nanocarriers such as plant viral nanoparticles (plant VNPs) can result in aggregation by reducing overall solubility. Given the benefits of hydrophilic nanocarrier platforms for targeted delivery and multivalent ligand display, coupled with the versatility of hydrophobic drugs, contrast agents, and peptides, this is an issue that must be addressed to realize their full potential. Here, we report two preincubation strategies that use a Pluronic F127 polymer scaffold to prevent the aggregation of conjugated plant VNPs: a plant VNP-polymer precoat (COAT) and an active ingredient formulation combined with a plant VNP-polymer precoat (FORMCOAT). The broad applications of these modified conjugation strategies were highlighted by testing their compatibility with three types of bioconjugation chemistry: -hydroxysuccinimide ester-amine coupling, maleimide-thiol coupling, and copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). The COAT and FORMCOAT strategies promoted efficient bioconjugation and prevented the aggregation that accompanies conventional bioconjugation methods, thus improving the stability, homogeneity, and translational potential of plant VNP conjugates in medicine and agriculture.
蛋白质纳米颗粒可用于递送大量的活性成分,这在医学和农业中具有优势。然而,将疏水性配体与亲水性纳米载体(如植物病毒纳米颗粒(plant VNPs))缀合会因降低整体溶解度而导致聚集。鉴于亲水纳米载体平台在靶向递送和多价配体显示方面的优势,以及疏水性药物、对比剂和肽的多功能性,必须解决这个问题以充分发挥其潜力。在这里,我们报告了两种使用 Pluronic F127 聚合物支架来防止缀合的植物 VNPs 聚集的预孵育策略:植物 VNP-聚合物预涂层(COAT)和与植物 VNP-聚合物预涂层相结合的活性成分制剂(FORMCOAT)。这些经过修饰的缀合策略的广泛应用通过测试其与三种生物偶联化学方法的兼容性得到了强调:-羟基琥珀酰亚胺酯-胺偶联、马来酰亚胺-巯基偶联和铜(I)-催化的叠氮-炔环加成(点击化学)。COAT 和 FORMCOAT 策略促进了有效的生物偶联,并防止了伴随传统生物偶联方法的聚集,从而提高了植物 VNP 缀合物在医学和农业中的稳定性、均一性和转化潜力。