Suppr超能文献

基于自深度匹配和提案超胶水的两阶段复制移动伪造检测

Two-Stage Copy-Move Forgery Detection With Self Deep Matching and Proposal SuperGlue.

作者信息

Liu Yaqi, Xia Chao, Zhu Xiaobin, Xu Shengwei

出版信息

IEEE Trans Image Process. 2022;31:541-555. doi: 10.1109/TIP.2021.3132828. Epub 2021 Dec 17.

Abstract

Copy-move forgery detection identifies a tampered image by detecting pasted and source regions in the same image. In this paper, we propose a novel two-stage framework specially for copy-move forgery detection. The first stage is a backbone self deep matching network, and the second stage is named as Proposal SuperGlue. In the first stage, atrous convolution and skip matching are incorporated to enrich spatial information and leverage hierarchical features. Spatial attention is built on self-correlation to reinforce the ability to find appearance similar regions. In the second stage, Proposal SuperGlue is proposed to remove false-alarmed regions and remedy incomplete regions. Specifically, a proposal selection strategy is designed to enclose highly suspected regions based on proposal generation and backbone score maps. Then, pairwise matching is conducted among candidate proposals by deep learning based keypoint extraction and matching, i.e., SuperPoint and SuperGlue. Integrated score map generation and refinement methods are designed to integrate results of both stages and obtain optimized results. Our two-stage framework unifies end-to-end deep matching and keypoint matching by obtaining highly suspected proposals, and opens a new gate for deep learning research in copy-move forgery detection. Experiments on publicly available datasets demonstrate the effectiveness of our two-stage framework.

摘要

复制 - 移动伪造检测通过检测同一图像中的粘贴区域和源区域来识别篡改图像。在本文中,我们提出了一种专门用于复制 - 移动伪造检测的新颖两阶段框架。第一阶段是骨干自深度匹配网络,第二阶段名为提案超级胶水(Proposal SuperGlue)。在第一阶段,采用空洞卷积和跳跃匹配来丰富空间信息并利用分层特征。基于自相关构建空间注意力,以增强找到外观相似区域的能力。在第二阶段,提出提案超级胶水以去除误报区域并修复不完整区域。具体而言,设计了一种提案选择策略,基于提案生成和骨干得分图来包围高度可疑区域。然后,通过基于深度学习的关键点提取和匹配(即超级点(SuperPoint)和超级胶水(SuperGlue))在候选提案之间进行成对匹配。设计了综合得分图生成和细化方法,以整合两个阶段的结果并获得优化结果。我们的两阶段框架通过获得高度可疑提案,将端到端深度匹配和关键点匹配统一起来,为复制 - 移动伪造检测中的深度学习研究打开了一扇新的大门。在公开可用数据集上的实验证明了我们两阶段框架的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验