Suppr超能文献

SPA-Net:一种基于跨度局部结构和注意力机制增强的深度学习方法,用于图像复制移动伪造检测。

SPA-Net: A Deep Learning Approach Enhanced Using a Span-Partial Structure and Attention Mechanism for Image Copy-Move Forgery Detection.

作者信息

Zhao Kaiqi, Yuan Xiaochen, Xie Zhiyao, Xiang Yan, Huang Guoheng, Feng Li

机构信息

School of Computer Science and Engineering, Macau University of Science and Technology, Macao 999078, China.

Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China.

出版信息

Sensors (Basel). 2023 Jul 15;23(14):6430. doi: 10.3390/s23146430.

Abstract

With the wide application of visual sensors and development of digital image processing technology, image copy-move forgery detection (CMFD) has become more and more prevalent. Copy-move forgery is copying one or several areas of an image and pasting them into another part of the same image, and CMFD is an efficient means to expose this. There are improper uses of forged images in industry, the military, and daily life. In this paper, we present an efficient end-to-end deep learning approach for CMFD, using a span-partial structure and attention mechanism (SPA-Net). The SPA-Net extracts feature roughly using a pre-processing module and finely extracts deep feature maps using the span-partial structure and attention mechanism as a SPA-net feature extractor module. The span-partial structure is designed to reduce the redundant feature information, while the attention mechanism in the span-partial structure has the advantage of focusing on the tamper region and suppressing the original semantic information. To explore the correlation between high-dimension feature points, a deep feature matching module assists SPA-Net to locate the copy-move areas by computing the similarity of the feature map. A feature upsampling module is employed to upsample the features to their original size and produce a copy-move mask. Furthermore, the training strategy of SPA-Net without pretrained weights has a balance between copy-move and semantic features, and then the module can capture more features of copy-move forgery areas and reduce the confusion from semantic objects. In the experiment, we do not use pretrained weights or models from existing networks such as VGG16, which would bring the limitation of the network paying more attention to objects other than copy-move areas.To deal with this problem, we generated a SPANet-CMFD dataset by applying various processes to the benchmark images from SUN and COCO datasets, and we used existing copy-move forgery datasets, CMH, MICC-F220, MICC-F600, GRIP, Coverage, and parts of USCISI-CMFD, together with our generated SPANet-CMFD dataset, as the training set to train our model. In addition, the SPANet-CMFD dataset could play a big part in forgery detection, such as deepfakes. We employed the CASIA and CoMoFoD datasets as testing datasets to verify the performance of our proposed method. The , , and are calculated to evaluate the CMFD results. Comparison results showed that our model achieved a satisfactory performance on both testing datasets and performed better than the existing methods.

摘要

随着视觉传感器的广泛应用和数字图像处理技术的发展,图像复制-移动伪造检测(CMFD)变得越来越普遍。复制-移动伪造是指复制图像的一个或几个区域并将它们粘贴到同一图像的另一部分,而CMFD是揭露这种行为的有效手段。在工业、军事和日常生活中存在对伪造图像的不当使用。在本文中,我们提出了一种用于CMFD的高效端到端深度学习方法,即使用跨度-局部结构和注意力机制(SPA-Net)。SPA-Net使用预处理模块粗略提取特征,并使用跨度-局部结构和注意力机制作为SPA-net特征提取器模块精细提取深度特征图。跨度-局部结构旨在减少冗余特征信息,而跨度-局部结构中的注意力机制具有专注于篡改区域并抑制原始语义信息的优势。为了探索高维特征点之间的相关性,一个深度特征匹配模块通过计算特征图的相似度来协助SPA-Net定位复制-移动区域。采用特征上采样模块将特征上采样到原始大小并生成复制-移动掩码。此外,没有预训练权重的SPA-Net的训练策略在复制-移动和语义特征之间取得了平衡,然后该模块可以捕获更多复制-移动伪造区域的特征并减少来自语义对象的混淆。在实验中,我们没有使用来自现有网络(如VGG16)的预训练权重或模型,因为这会带来网络更关注复制-移动区域以外的对象的局限性。为了解决这个问题,我们通过对来自SUN和COCO数据集的基准图像应用各种处理生成了SPANet-CMFD数据集,并且我们将现有的复制-移动伪造数据集CMH、MICC-F220、MICC-F600、GRIP、Coverage以及部分USCISI-CMFD数据集与我们生成的SPANet-CMFD数据集一起用作训练集来训练我们的模型。此外,SPANet-CMFD数据集在伪造检测(如深度伪造)中可以发挥重要作用。我们使用CASIA和CoMoFoD数据集作为测试数据集来验证我们提出的方法的性能。计算了准确率、召回率和F1值来评估CMFD结果。比较结果表明,我们的模型在两个测试数据集上都取得了令人满意的性能,并且比现有方法表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c2f/10385401/437905182f32/sensors-23-06430-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验