Suppr超能文献

基于机器学习的催化木质素解聚反应现象分析。

Machine learning based analysis of reaction phenomena in catalytic lignin depolymerization.

机构信息

Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 S6-10, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 S6-10, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

出版信息

Bioresour Technol. 2022 Feb;345:126503. doi: 10.1016/j.biortech.2021.126503. Epub 2021 Dec 7.

Abstract

Heterogeneously catalyzed lignin solvolysis opens the possibility of transforming low value biomass into high value, useful aromatic chemicals, however, its reaction behavior is poorly understood due to the many possible interactions between reaction parameters. In this study, a novel predictive model for bio-oil yield, char yield and reaction time is developed using Random Forest (RF) regression method using data available from the literature to study the impact of surface properties of the catalyst and the weight averaged molecular weight of the lignin (M) used in the reaction. The models achieved a coefficient of determination (R2) score of 0.9062, 0.9428 and 0.8327, respectively, and feature importance for each case was explained and tied to studies that provide a mechanistic explanation for the performance of the model. Surface properties and lignin M showed no importance to the prediction of bio-oil yield and average pore diameter contributed 3% of feature importance to reaction time.

摘要

多相催化木质素解聚为将低价值生物质转化为高价值、有用的芳烃化学品开辟了可能性,然而,由于反应参数之间存在许多可能的相互作用,其反应行为仍不甚清楚。在这项研究中,我们使用随机森林 (RF) 回归方法开发了一种新的生物油产率、焦产率和反应时间的预测模型,该模型使用文献中可用的数据来研究催化剂表面性质和反应中使用的木质素(M)的重量平均分子量的影响。模型的决定系数 (R2) 得分分别为 0.9062、0.9428 和 0.8327,并且对每种情况的特征重要性进行了解释,并与为模型性能提供机理解释的研究联系起来。表面性质和木质素 M 对生物油产率的预测没有重要性,平均孔径对反应时间的特征重要性贡献了 3%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验