Suppr超能文献

基于能量的多电极记录中皮层慢波分层聚类

Energy-Based Hierarchical Clustering of Cortical Slow Waves in Multi-Electrode Recordings.

作者信息

Camassa Alessandra, Mattia Maurizio, Sanchez-Vives Maria V

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:198-203. doi: 10.1109/EMBC46164.2021.9630931.

Abstract

The recent development of novel multi-electrode recording technologies has revealed the existence of traveling patterns of cortical activity in many species and under different states of awareness. Among these, slow activation waves occurring under sleep and anesthesia have been widely investigated as they provide unique insights into network features such as excitability, connectivity, structure, and dynamics of the cerebral cortex. Such characterization is usually based on clustering methods which are constrained by a priori assumptions as to the number of clusters to be used or rely on wave-by-wave pattern reconstruction. Here, we introduce a new computational tool based on modal analysis of fluid flows which is robustly applied to multivariate electrophysiological data from cortical networks, namely the Energy-based Hierarchical Waves Clustering method (EHWC). EHWC is composed of three main steps: (1) detecting the occurrence of global waves; (2) reducing the data dimensionality via singular value decomposition; (3) clustering hierarchically the singled-out waves. The analysis does not require the single-channel contribution to the waves, which is a typical bottleneck in this kind of analysis due to the unavoidable intrinsic variability of locally recorded activity. For testing and validation, here we used in vivo extracellular recordings from mice cortex under three different levels of anesthesia. As a result, we found slow waves with an increasing number of propagation modes as the anesthesia level decreases, giving an estimate of the increasing complexity of network dynamics. This and other wave's features replicate and extend the findings from previous literature, paving the way to extend the same approach to non-invasive electrophysiological recordings like EEG and fMRI used clinically for the characterization of brain dynamics and clinical stratification in brain lesions.

摘要

新型多电极记录技术的最新发展揭示了许多物种在不同意识状态下皮质活动的传播模式的存在。其中,睡眠和麻醉状态下出现的慢激活波已得到广泛研究,因为它们为了解大脑皮质的兴奋性、连通性、结构和动力学等网络特征提供了独特的视角。这种特征描述通常基于聚类方法,这些方法受到关于要使用的聚类数量的先验假设的限制,或者依赖于逐波模式重建。在这里,我们介绍一种基于流体流动模态分析的新计算工具,它被稳健地应用于来自皮质网络的多变量电生理数据,即基于能量的分层波聚类方法(EHWC)。EHWC由三个主要步骤组成:(1)检测全局波的出现;(2)通过奇异值分解降低数据维度;(3)对挑选出的波进行分层聚类。该分析不需要单通道对波的贡献,而这是此类分析中由于局部记录活动不可避免的内在变异性而导致的典型瓶颈。为了进行测试和验证,我们在这里使用了来自小鼠皮质在三种不同麻醉水平下的体内细胞外记录。结果,我们发现随着麻醉水平降低,慢波的传播模式数量增加,这给出了网络动力学复杂性增加的估计。这一结果以及其他波的特征重复并扩展了先前文献中的发现,为将相同方法扩展到非侵入性电生理记录(如临床上用于表征脑动力学和脑损伤临床分层的脑电图和功能磁共振成像)铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验