Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1201-1204. doi: 10.1109/EMBC46164.2021.9630635.
Experimental background noise present in biosensors' data hinders the ability for sensitive and accurate detection of critical biomarkers. Here, we report our digital signal processing analysis with respect to frequency and time domain (FTD) data to reduce noise in an experimental microfluidic impedance cytometer. We evaluated the effectiveness of employed noise filtering techniques independently, including baseline drift correction, high frequency noise filtering, and powerline interference mitigation. We further explored the combined effect of all filters and determine improvements in signal-to-noise (SNR) ratio and particle counting accuracy. By removing noise regimes, SNR improved with this impedance cytometer device, and our future efforts will explore filtering effects of more specific and uncommon noise spectrums to greater optimize device performance.
生物传感器数据中的实验背景噪声会干扰对关键生物标志物进行灵敏准确检测的能力。在这里,我们报告了我们针对频率和时域 (FTD) 数据的数字信号处理分析,以减少实验微流控阻抗细胞仪中的噪声。我们分别评估了所采用的噪声滤波技术的有效性,包括基线漂移校正、高频噪声滤波和电源线干扰抑制。我们进一步探讨了所有滤波器的组合效果,并确定了信号噪声比 (SNR) 和粒子计数准确性的提高。通过去除噪声范围,该阻抗细胞仪设备的 SNR 得到了提高,我们未来的工作将探索更具体和不常见噪声频谱的滤波效果,以进一步优化设备性能。