Suppr超能文献

一款用于优化儿科癫痫研究中动态离散数据收集的新型手机应用程序。

A Novel Mobile Phone App for Optimizing Dynamic Discrete Data Collection in Pediatric Epilepsy Studies.

作者信息

Brooks Skylar J, Stamoulis Catherine

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1787-1790. doi: 10.1109/EMBC46164.2021.9629809.

Abstract

Mobile technologies, including applications (apps) and wearable devices, are playing an increasingly important role in health monitoring. In particular, apps are becoming a critical component of m-health, which promises to transform personalized care management, optimize clinical outcomes, and improve patient-provider communication. They may also play a central role in research, to facilitate rapid and inexpensive collection of repeated data, such as momentary clinical, physiological, and/or behavioral assessments and optimize their sampling. This is particularly important for measuring systems/processes with characteristic temporal patterns, e.g., circadian rhythms, which need to be adequately sampled in order to be accurately estimated from discrete measurements. Temporal sampling of these patterns may also be critical for elucidating their modulation by pathological events. This paper presents a novel app, developed with the overarching goal to optimize repeated salivary hormone collection in pediatric patients with epilepsy through improved patient-investigator communication and enhanced alerts. The ultimate goal of the app is to maximize regularity of the data collection (up to 8 samples/day for ~4-5 days of hospitalization) while minimizing intrusion on patients during clinical monitoring. In addition, the app facilitates flexible collection of data on stress and seizure symptoms at the time of saliva sampling, which can then be correlated with hormone levels and physiological changes indicating impending seizures.

摘要

包括应用程序(apps)和可穿戴设备在内的移动技术在健康监测中发挥着越来越重要的作用。特别是,应用程序正成为移动医疗(m-health)的关键组成部分,有望改变个性化护理管理、优化临床结果并改善医患沟通。它们在研究中也可能发挥核心作用,以促进快速且低成本地收集重复数据,例如瞬时临床、生理和/或行为评估,并优化其采样。这对于测量具有特征性时间模式的系统/过程尤为重要,例如昼夜节律,为了从离散测量中准确估计这些节律,需要对其进行充分采样。这些模式的时间采样对于阐明病理事件对它们的调节作用可能也至关重要。本文介绍了一款新颖的应用程序,其开发的总体目标是通过改善医患沟通和增强警报来优化癫痫患儿唾液激素的重复采集。该应用程序的最终目标是在临床监测期间将数据收集的规律性最大化(住院约4 - 5天内每天最多采集8个样本),同时将对患者的干扰降至最低。此外,该应用程序便于在唾液采样时灵活收集有关压力和癫痫发作症状的数据,这些数据随后可与激素水平以及表明即将发作的生理变化相关联。

相似文献

5
An Android Communication App Forensic Taxonomy.一款安卓通信应用取证分类法。
J Forensic Sci. 2016 Sep;61(5):1337-50. doi: 10.1111/1556-4029.13164. Epub 2016 Jul 22.
6
Forecasting cycles of seizure likelihood.预测癫痫发作可能性的周期。
Epilepsia. 2020 Apr;61(4):776-786. doi: 10.1111/epi.16485. Epub 2020 Mar 27.
8
Smartphone and tablet self management apps for asthma.用于哮喘的智能手机和平板电脑自我管理应用程序。
Cochrane Database Syst Rev. 2013 Nov 27;2013(11):CD010013. doi: 10.1002/14651858.CD010013.pub2.
9
A review of mobile apps for epilepsy self-management.癫痫自我管理移动应用综述。
Epilepsy Behav. 2018 Apr;81:62-69. doi: 10.1016/j.yebeh.2017.12.010. Epub 2018 Mar 20.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验