Suppr超能文献

新型冠状病毒肺炎的筛查:使用移动患者监测系统的咳嗽记录。

Novel COVID-19 Screening Using Cough Recordings of A Mobile Patient Monitoring System.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2353-2357. doi: 10.1109/EMBC46164.2021.9630722.

Abstract

Since the COVID-19 pandemic began, research has shown promises in building COVID-19 screening tools using cough recordings as a convenient and inexpensive alternative to current testing techniques. In this paper, we present a novel and fully automated algorithm framework for cough extraction and COVID-19 detection using a combination of signal processing and machine learning techniques. It involves extracting cough episodes from audios of a diverse real-world noisy conditions and then screening for the COVID-19 infection based on the cough characteristics. The proposed algorithm was developed and evaluated using self-recorded cough audios collected from COVID-19 patients monitored by Biovitals Sentinel remote patient management platform and publicly available datasets of various sound recordings. The proposed algorithm achieves a duration Area Under Receiver Operating Characteristic curve (AUROC) of 98.6% in the cough extraction task and a mean cross-validation AUROC of 98.1% in the COVID-19 classification task. These results demonstrate high accuracy and robustness of the proposed algorithm as a fast and easily accessible COVID-19 screening tool and its potential to be used for other cough analysis applications.

摘要

自 COVID-19 大流行开始以来,研究表明,使用咳嗽记录来构建 COVID-19 筛查工具具有很大的前景,因为这是一种方便且廉价的替代当前检测技术的方法。在本文中,我们提出了一种新颖且完全自动化的算法框架,用于使用信号处理和机器学习技术的组合来提取咳嗽并检测 COVID-19。该框架涉及从各种真实嘈杂环境的音频中提取咳嗽事件,然后根据咳嗽特征筛查 COVID-19 感染。该算法是使用从 Biovitals Sentinel 远程患者管理平台监测的 COVID-19 患者的自我录制的咳嗽音频以及各种声音记录的公共可用数据集进行开发和评估的。该算法在咳嗽提取任务中的持续时间接收者操作特征曲线 (AUROC) 达到 98.6%,在 COVID-19 分类任务中的平均交叉验证 AUROC 达到 98.1%。这些结果表明,该算法作为一种快速且易于访问的 COVID-19 筛查工具具有很高的准确性和鲁棒性,并且有可能用于其他咳嗽分析应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验