Suppr超能文献

用于 Cobb 角估计的异质一致性损失。

Heterogeneous Consistency Loss for Cobb Angle Estimation.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2588-2591. doi: 10.1109/EMBC46164.2021.9631102.

Abstract

Cobb angle is the most common quantification of the spine deformity called scoliosis. Recently, automatic Cobb angle estimation has become popular with either semantic segmentation networks or landmark detectors. However, such methods can not perform robustly when some vertebrae have ambiguous appearances in X-ray images. To alleviate the above problem, we propose a multi-task model that simultaneously outputs semantic masks and keypoints of vertebrae. When training this model, we propose a heterogeneous consistency loss function to enhance the consistency between keypoints and semantic masks. Extensive experiments on anterior-posterior (AP) X-ray images from AASCE MICCAI 2019 Challenge demonstrate that our method significantly reduces Cobb angle estimation errors and achieves state-of-the-art performances.Clinical relevance- This work shows that a multi-task model has some potential to measure Cobb angles in more challenging situations, and we can directly integrate it into an auxiliary clinical diagnosis system to assist doctors more effectively for subsequent treatments.

摘要

Cobb 角是最常见的脊柱畸形(称为脊柱侧凸)的量化指标。最近,自动 Cobb 角估计方法已经变得很流行,无论是语义分割网络还是地标检测器都可以使用。然而,当 X 射线图像中某些椎骨的外观不明确时,这些方法可能无法稳健地执行。为了解决上述问题,我们提出了一种多任务模型,该模型可以同时输出椎骨的语义掩模和关键点。在训练该模型时,我们提出了一种异构一致性损失函数,以增强关键点和语义掩模之间的一致性。来自 AASCE MICCAI 2019 挑战赛的前后(AP)X 射线图像的广泛实验表明,我们的方法显著降低了 Cobb 角估计误差,并达到了最先进的性能。临床相关性- 这项工作表明,多任务模型在更具挑战性的情况下测量 Cobb 角具有一定的潜力,我们可以直接将其集成到辅助临床诊断系统中,以便更有效地帮助医生进行后续治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验