Suppr超能文献

基于多模态 MRI 图像的阿尔茨海默病分类的输入不可知深度学习。

Input Agnostic Deep Learning for Alzheimer's Disease Classification Using Multimodal MRI Images.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2875-2878. doi: 10.1109/EMBC46164.2021.9629807.

Abstract

Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments. The advances in machine learning and publicly available medical datasets initiated multiple studies in AD diagnosis. In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes on the basis of structural MRI and diffusion tensor imaging (DTI) scans from the OASIS-3 dataset. In addition to a conventional multi-modal network, we also present an input agnostic architecture that allows diagnosis with either sMRI or DTI scan, which distinguishes our method from previous multi-modal machine learning-based methods. The results show that the input agnostic model achieves 0.96 accuracy when both structural MRI and DTI scans are provided as inputs.

摘要

阿尔茨海默病(AD)是一种进行性的大脑疾病,会导致记忆和功能受损。机器学习和公开可用的医学数据集的进步引发了多项 AD 诊断研究。在这项工作中,我们利用多模态深度学习方法,基于 OASIS-3 数据集的结构 MRI 和弥散张量成像(DTI)扫描,对正常认知、轻度认知障碍和 AD 进行分类。除了传统的多模态网络,我们还提出了一种输入不可知的架构,允许仅使用 sMRI 或 DTI 扫描进行诊断,这使我们的方法有别于以前的基于多模态机器学习的方法。结果表明,当同时提供结构 MRI 和 DTI 扫描作为输入时,输入不可知模型的准确率达到 0.96。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验