Harbin Institute of Technology, Harbin, China.
COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan.
J Digit Imaging. 2020 Oct;33(5):1073-1090. doi: 10.1007/s10278-019-00265-5.
Alzheimer's disease (AD) is an irreversible devastative neurodegenerative disorder associated with progressive impairment of memory and cognitive functions. Its early diagnosis is crucial for the development of possible future treatment option(s). Structural magnetic resonance images (sMRI) play an important role to help in understanding the anatomical changes related to AD especially in its early stages. Conventional methods require the expertise of domain experts and extract hand-picked features such as gray matter substructures and train a classifier to distinguish AD subjects from healthy subjects. Different from these methods, this paper proposes to construct multiple deep 2D convolutional neural networks (2D-CNNs) to learn the various features from local brain images which are combined to make the final classification for AD diagnosis. The whole brain image was passed through two transfer learning architectures; Inception version 3 and Xception, as well as a custom Convolutional Neural Network (CNN) built with the help of separable convolutional layers which can automatically learn the generic features from imaging data for classification. Our study is conducted using cross-sectional T1-weighted structural MRI brain images from Open Access Series of Imaging Studies (OASIS) database to maintain the size and contrast over different MRI scans. Experimental results show that the transfer learning approaches exceed the performance of non-transfer learning-based approaches demonstrating the effectiveness of these approaches for the binary AD classification task.
阿尔茨海默病(AD)是一种不可逆转的破坏性神经退行性疾病,与记忆和认知功能的进行性损害有关。早期诊断对开发可能的未来治疗方案至关重要。结构磁共振成像(sMRI)在帮助理解与 AD 相关的解剖结构变化方面发挥着重要作用,特别是在早期阶段。传统方法需要领域专家的专业知识,并提取精选的特征,如灰质亚结构,并训练分类器将 AD 患者与健康受试者区分开来。与这些方法不同,本文提出构建多个深度二维卷积神经网络(2D-CNN),从局部脑图像中学习各种特征,然后将这些特征组合起来进行最终的 AD 诊断分类。整个大脑图像通过两个迁移学习架构(Inception version 3 和 Xception)以及一个在可分离卷积层的帮助下构建的自定义卷积神经网络(CNN)进行传递,这些可分离卷积层可以自动从成像数据中学习通用特征,以便进行分类。我们的研究使用来自开放获取成像研究系列(OASIS)数据库的横断面 T1 加权结构 MRI 脑图像进行,以保持不同 MRI 扫描之间的大小和对比度。实验结果表明,迁移学习方法优于非迁移学习方法,证明了这些方法在 AD 二分类任务中的有效性。