Suppr超能文献

基于结构 MRI 影像的深度学习阿尔茨海默病二分类。

Binary Classification of Alzheimer's Disease Using sMRI Imaging Modality and Deep Learning.

机构信息

Harbin Institute of Technology, Harbin, China.

COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan.

出版信息

J Digit Imaging. 2020 Oct;33(5):1073-1090. doi: 10.1007/s10278-019-00265-5.

Abstract

Alzheimer's disease (AD) is an irreversible devastative neurodegenerative disorder associated with progressive impairment of memory and cognitive functions. Its early diagnosis is crucial for the development of possible future treatment option(s). Structural magnetic resonance images (sMRI) play an important role to help in understanding the anatomical changes related to AD especially in its early stages. Conventional methods require the expertise of domain experts and extract hand-picked features such as gray matter substructures and train a classifier to distinguish AD subjects from healthy subjects. Different from these methods, this paper proposes to construct multiple deep 2D convolutional neural networks (2D-CNNs) to learn the various features from local brain images which are combined to make the final classification for AD diagnosis. The whole brain image was passed through two transfer learning architectures; Inception version 3 and Xception, as well as a custom Convolutional Neural Network (CNN) built with the help of separable convolutional layers which can automatically learn the generic features from imaging data for classification. Our study is conducted using cross-sectional T1-weighted structural MRI brain images from Open Access Series of Imaging Studies (OASIS) database to maintain the size and contrast over different MRI scans. Experimental results show that the transfer learning approaches exceed the performance of non-transfer learning-based approaches demonstrating the effectiveness of these approaches for the binary AD classification task.

摘要

阿尔茨海默病(AD)是一种不可逆转的破坏性神经退行性疾病,与记忆和认知功能的进行性损害有关。早期诊断对开发可能的未来治疗方案至关重要。结构磁共振成像(sMRI)在帮助理解与 AD 相关的解剖结构变化方面发挥着重要作用,特别是在早期阶段。传统方法需要领域专家的专业知识,并提取精选的特征,如灰质亚结构,并训练分类器将 AD 患者与健康受试者区分开来。与这些方法不同,本文提出构建多个深度二维卷积神经网络(2D-CNN),从局部脑图像中学习各种特征,然后将这些特征组合起来进行最终的 AD 诊断分类。整个大脑图像通过两个迁移学习架构(Inception version 3 和 Xception)以及一个在可分离卷积层的帮助下构建的自定义卷积神经网络(CNN)进行传递,这些可分离卷积层可以自动从成像数据中学习通用特征,以便进行分类。我们的研究使用来自开放获取成像研究系列(OASIS)数据库的横断面 T1 加权结构 MRI 脑图像进行,以保持不同 MRI 扫描之间的大小和对比度。实验结果表明,迁移学习方法优于非迁移学习方法,证明了这些方法在 AD 二分类任务中的有效性。

相似文献

1
Binary Classification of Alzheimer's Disease Using sMRI Imaging Modality and Deep Learning.
J Digit Imaging. 2020 Oct;33(5):1073-1090. doi: 10.1007/s10278-019-00265-5.
2
Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.
Neuroinformatics. 2018 Oct;16(3-4):295-308. doi: 10.1007/s12021-018-9370-4.
3
Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks.
Comput Med Imaging Graph. 2018 Dec;70:101-110. doi: 10.1016/j.compmedimag.2018.09.009. Epub 2018 Oct 2.
4
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14.
5
Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer's disease diagnosis.
Brain Imaging Behav. 2021 Oct;15(5):2330-2339. doi: 10.1007/s11682-020-00427-y. Epub 2021 Jan 4.
6
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.
Neuroimage. 2020 Mar;208:116459. doi: 10.1016/j.neuroimage.2019.116459. Epub 2019 Dec 16.
7
Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI.
Br J Radiol. 2022 Aug 1;95(1136):20211253. doi: 10.1259/bjr.20211253. Epub 2022 Jun 9.
8
RNN-based longitudinal analysis for diagnosis of Alzheimer's disease.
Comput Med Imaging Graph. 2019 Apr;73:1-10. doi: 10.1016/j.compmedimag.2019.01.005. Epub 2019 Jan 26.
9
Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
Int J Neural Syst. 2020 Jun;30(6):2050032. doi: 10.1142/S012906572050032X.

引用本文的文献

2
Leveraging transformers and explainable AI for Alzheimer's disease interpretability.
PLoS One. 2025 May 23;20(5):e0322607. doi: 10.1371/journal.pone.0322607. eCollection 2025.
3
Stacked CNN-based multichannel attention networks for Alzheimer disease detection.
Sci Rep. 2025 Feb 17;15(1):5815. doi: 10.1038/s41598-025-85703-x.
4
A 3D decoupling Alzheimer's disease prediction network based on structural MRI.
Health Inf Sci Syst. 2025 Jan 17;13(1):17. doi: 10.1007/s13755-024-00333-3. eCollection 2025 Dec.
5
Comorbidity-based framework for Alzheimer's disease classification using graph neural networks.
Sci Rep. 2024 Sep 10;14(1):21061. doi: 10.1038/s41598-024-72321-2.
6
10
XGBoost-SHAP-based interpretable diagnostic framework for alzheimer's disease.
BMC Med Inform Decis Mak. 2023 Jul 25;23(1):137. doi: 10.1186/s12911-023-02238-9.

本文引用的文献

1
Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation.
Med Image Anal. 2020 Jul;63:101694. doi: 10.1016/j.media.2020.101694. Epub 2020 May 1.
2
Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI.
IEEE Trans Pattern Anal Mach Intell. 2020 Apr;42(4):880-893. doi: 10.1109/TPAMI.2018.2889096. Epub 2018 Dec 21.
3
Fusion of deep learning models of MRI scans, Mini-Mental State Examination, and logical memory test enhances diagnosis of mild cognitive impairment.
Alzheimers Dement (Amst). 2018 Sep 28;10:737-749. doi: 10.1016/j.dadm.2018.08.013. eCollection 2018.
4
Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks.
Comput Med Imaging Graph. 2018 Dec;70:101-110. doi: 10.1016/j.compmedimag.2018.09.009. Epub 2018 Oct 2.
6
A broader view of dementia: multiple co-pathologies are the norm.
Brain. 2018 Jul 1;141(7):1894-1897. doi: 10.1093/brain/awy153.
7
Anatomical Landmark Based Deep Feature Representation for MR Images in Brain Disease Diagnosis.
IEEE J Biomed Health Inform. 2018 Sep;22(5):1476-1485. doi: 10.1109/JBHI.2018.2791863. Epub 2018 Jan 10.
8
Medical Image Synthesis with Deep Convolutional Adversarial Networks.
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.
9
Classification of Alzheimer's Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images.
Front Neuroinform. 2018 Jun 19;12:35. doi: 10.3389/fninf.2018.00035. eCollection 2018.
10
Landmark-based deep multi-instance learning for brain disease diagnosis.
Med Image Anal. 2018 Jan;43:157-168. doi: 10.1016/j.media.2017.10.005. Epub 2017 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验