Suppr超能文献

ICA 研究生理噪声校正对内在连通性网络的维度和空间图的影响。

An ICA Investigation into the Effect of Physiological Noise Correction on Dimensionality and Spatial Maps of Intrinsic Connectivity Networks.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3145-3148. doi: 10.1109/EMBC46164.2021.9629877.

Abstract

Physiological processes such as cardiac pulsations and respiration can induce signal modulations in functional magnetic resonance imaging (fMRI) time series, and confound inferences made about neural processing from analyses of the blood oxygenation level-dependent (BOLD) signals. Retrospective image space correction of physiological noise (RETROICOR) is a widely used approach to reduce physiological signals in data. Independent component analysis (ICA) is a valuable blind source separation method for analyzing brain networks, referred to as intrinsic connectivity networks (ICNs). Previously, we showed that temporal properties of the ICA-derived networks such as spectral power and functional network connectivity could be impacted by RETROICOR corrections. The goal of this study is to investigate the effect of retrospective correction of physiological artifacts on the ICA dimensionality (model order) and intensities of ICN spatial maps. To this aim, brain BOLD fMRI, heartbeat, and respiration were measured in 22 healthy subjects during resting state. ICA dimensionality was estimated using minimum description length (MDL) based on i.i.d. data samples and smoothness FWHM kernel, and entropy-rate based order selection by finite memory length model (ER-FM) and autoregressive model (ER-AR). Differences in spatial maps between the raw and denoised data were compared using the paired t-test and false discovery rate (FDR) thresholding was used to correct for multiple comparisons. Results showed that ICA dimensionality was greater in the raw data compared to the denoised data. Significant differences were found in the intensities of spatial maps for three ICNs: basal ganglia, precuneus, and frontal network. These preliminary results indicate that the retrospective physiological noise correction can induce change in the resting state spatial map intensity related to the within-network connectivity. More research is needed to understand this effect.

摘要

生理过程,如心脏搏动和呼吸,会在功能磁共振成像(fMRI)时间序列中引起信号调制,并干扰从血氧水平依赖(BOLD)信号分析中得出的关于神经处理的推论。生理噪声的回顾性图像空间校正(RETROICOR)是一种广泛用于减少数据中生理信号的方法。独立成分分析(ICA)是一种用于分析脑网络的有价值的盲源分离方法,称为内在连通性网络(ICN)。之前,我们表明,ICA 衍生网络的时间特性,如谱功率和功能网络连通性,可能会受到 RETROICOR 校正的影响。本研究的目的是研究生理伪影的回顾性校正对 ICA 维数(模型阶数)和 ICN 空间图强度的影响。为此,在静息状态下,对 22 名健康受试者进行了脑 BOLD fMRI、心跳和呼吸测量。ICA 维数使用基于独立同分布(i.i.d.)数据样本的最小描述长度(MDL)和基于平滑 FWHM 核的基于最小描述长度(MDL)进行估计,并使用有限记忆长度模型(ER-FM)和自回归模型(ER-AR)的熵率进行基于排序选择。使用配对 t 检验比较原始数据和去噪数据之间的空间图差异,并使用错误发现率(FDR)阈值进行多重比较校正。结果表明,与去噪数据相比,原始数据中的 ICA 维数更大。在三个 ICN 的空间图强度上发现了显著差异:基底节、楔前叶和额网络。这些初步结果表明,回顾性生理噪声校正会引起与网络内连通性相关的静息状态空间图强度的变化。需要进一步研究以了解这种影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验