Jarrahi Behnaz, Mackey Sean
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1041-1045. doi: 10.1109/EMBC.2018.8512478.
Motion-induced artifact detection has become a fixture in the assessment of functional magnetic resonance imaging (fMRI) quality control. However, the effects of other MR image quality (IQ) metrics on intrinsic connectivity brain networks are largely unexplored. Accordingly, we report herein the initial assessment of the effects of a comprehensive list of IQ metrics on resting state networks using a multivariate analysis of covariance (MANCOVA) approach based on high-order spatial independent component analysis (ICA). Three categories of MR IQ metrics were considered: (1) metrics for artifacts including the AFNI outlier ratio and quality index, framewise displacement, and ghost to signal ratio, (2) metrics for the temporal quality of MRI data including the temporal framewise change in global BOLD signals (DVARS), global correlation of time-series, and temporal signal to noise ratio, (3) metrics for the structural quality of MRI data including the entropy focus criterion, foreground-background energy ratio, full-width half maximum smoothness, and static signal to noise ratio. After FDR-correction for multiple comparisons, results showed significant effects of the static and temporal signal to noise ratios on the spatial map intensities of the basal ganglia, default-mode and cerebellar networks. AFNI outlier ratio, framewise displacement and DVARS exhibited significant effects on the BOLD power spectra of sensorimotor networks. The global correlation of time-series displayed wide-spread modulation of the spectral power in most networks. Further investigations of the effect of IQ metrics on the characteristics of intrinsic connectivity brain networks allow more accurate interpretation of the fMRI results.
运动诱发伪影检测已成为功能磁共振成像(fMRI)质量控制评估中的一项固定内容。然而,其他磁共振图像质量(IQ)指标对内在连接性脑网络的影响在很大程度上尚未得到探索。因此,我们在此报告使用基于高阶空间独立成分分析(ICA)的多变量协方差分析(MANCOVA)方法,对一系列IQ指标对静息态网络的影响进行的初步评估。我们考虑了三类磁共振IQ指标:(1)伪影指标,包括AFNI异常值比率和质量指数、逐帧位移以及鬼影与信号比率;(2)MRI数据的时间质量指标,包括全局BOLD信号的时间逐帧变化(DVARS)、时间序列的全局相关性以及时间信噪比;(3)MRI数据的结构质量指标,包括熵聚焦标准、前景 - 背景能量比率、半高宽平滑度以及静态信噪比。在对多重比较进行FDR校正后,结果显示静态和时间信噪比分别对基底神经节、默认模式和小脑网络的空间图强度有显著影响。AFNI异常值比率、逐帧位移和DVARS对感觉运动网络的BOLD功率谱有显著影响。时间序列的全局相关性在大多数网络中对频谱功率表现出广泛的调制作用。对IQ指标对内在连接性脑网络特征影响的进一步研究有助于更准确地解释fMRI结果。