Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3463-3466. doi: 10.1109/EMBC46164.2021.9629937.
Eye closure changes brain activity, so eye-blink tracking of subjects undergoing resting-state functional magnetic resonance imaging (fMRI) is relevant for identifying when a subject blinks, falls asleep, or keeps their eyes closed. Existing MRI eye-tracking solutions use commercially available MR-compatible video cameras with tracking software that can fail on low-quality videos. In this paper, we propose a two-stage convolutional recurrent neural network to classify open and closed eyes from frames of MRI eye-tracking videos under variable camera conditions. The model extracts visual features from each video frame using a convolutional neural network based on the Inception-v3 model, then uses a long short-term memory network to incorporate temporal information encoded in the sequence of visual features over time. Our model is implemented in Keras and demonstrated on a dataset of MRI eye-tracking videos from the Human Connectome Project. We manually labelled frames from the dataset for training and evaluation. The network was able to classify eye-blink states with a precision of 0.739 and recall of 0.835 on a previously unseen holdout dataset under varying camera conditions, eye position, and video quality.Clinical relevance- Functional mapping studies in psychiatry and neuro-development which rely on a resting state fMRI protocol may yield divergent results depending on whether the subject keeps their eyes closed or open or whether the subject falls asleep. The clinical relevance of this work is to introduce the eye state (closed or open) in brain imaging studies as a prospective covariate, and as a feature that can potentially control for sleep state as a confounding factor.
闭眼会改变大脑活动,因此,对进行静息态功能磁共振成像(fMRI)的受试者进行眨眼追踪,对于识别受试者何时眨眼、入睡或闭眼是相关的。现有的 MRI 眼动追踪解决方案使用市售的与磁共振兼容的摄像机和跟踪软件,但在低质量视频中可能会失败。在本文中,我们提出了一种两阶段卷积递归神经网络,用于在可变摄像机条件下从 MRI 眼动追踪视频的帧中分类睁眼和闭眼。该模型使用基于 Inception-v3 模型的卷积神经网络从每一视频帧中提取视觉特征,然后使用长短期记忆网络来结合随时间在视觉特征序列中编码的时间信息。我们的模型是在 Keras 中实现的,并在来自人类连接组计划的 MRI 眼动追踪视频数据集上进行了演示。我们为训练和评估手动标记了数据集的帧。该网络能够在不同摄像机条件、眼睛位置和视频质量下,对以前看不见的数据集进行分类,眨眼状态的精度为 0.739,召回率为 0.835。临床相关性-依赖于静息状态 fMRI 协议的精神病学和神经发育功能映射研究可能会产生不同的结果,具体取决于受试者是闭眼还是睁眼,或者受试者是否入睡。这项工作的临床相关性在于将眼状态(闭眼或睁眼)作为前瞻性协变量引入脑成像研究中,并作为潜在的控制睡眠状态的混杂因素的特征。