Suppr超能文献

眼动 LRCN:一种用于眼动眨眼完整性检测的长期递归卷积网络。

Eye-LRCN: A Long-Term Recurrent Convolutional Network for Eye Blink Completeness Detection.

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):5130-5140. doi: 10.1109/TNNLS.2022.3202643. Epub 2024 Apr 4.

Abstract

Computer vision syndrome causes vision problems and discomfort mainly due to dry eye. Several studies show that dry eye in computer users is caused by a reduction in the blink rate and an increase in the prevalence of incomplete blinks. In this context, this article introduces Eye-LRCN, a new eye blink detection method that also evaluates the completeness of the blink. The method is based on a long-term recurrent convolutional network (LRCN), which combines a convolutional neural network (CNN) for feature extraction with a bidirectional recurrent neural network that performs sequence learning and classifies the blinks. A Siamese architecture is used during CNN training to overcome the high-class imbalance present in blink detection and the limited amount of data available to train blink detection models. The method was evaluated on three different tasks: blink detection, blink completeness detection, and eye state detection. We report superior performance to the state-of-the-art methods in blink detection and blink completeness detection, and remarkable results in eye state detection.

摘要

计算机视觉综合征主要因干眼症导致视力问题和不适。多项研究表明,计算机用户的干眼症是由于眨眼频率降低和不完全眨眼频率增加引起的。在此背景下,本文提出了一种新的眼动检测方法 Eye-LRCN,该方法还可以评估眨眼的完整性。该方法基于长短期记忆卷积网络(LRCN),它将用于特征提取的卷积神经网络(CNN)与执行序列学习并对眨眼进行分类的双向递归神经网络相结合。在 CNN 训练过程中使用了孪生架构,以克服眨眼检测中存在的高类不平衡问题以及训练眨眼检测模型可用的数据量有限的问题。该方法在三个不同任务上进行了评估:眨眼检测、眨眼完整性检测和眼睛状态检测。在眨眼检测和眨眼完整性检测方面,我们的表现优于最新方法,在眼睛状态检测方面也取得了显著的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验