Medical Informatics Group, Berlin Institute of Health at Charité - Universitätsmedizin, Berlin, Germany.
Ain Shams University, Cairo, Egypt.
Cochlear Implants Int. 2024 Jan;25(1):46-58. doi: 10.1080/14670100.2023.2274199. Epub 2023 Nov 3.
To propose an automated fast cochlear segmentation, length, and volume estimation method from clinical 3D multimodal images which has a potential role in the choice of cochlear implant type, surgery planning, and robotic surgeries.
Two datasets from different countries were used. These datasets include 219 clinical 3D images of cochlea from 3 modalities: CT, CBCT, and MR. The datasets include different ages, genders, and types of cochlear implants. We propose an atlas-model-based method for cochlear segmentation and measurement based on high-resolution CT model and -value. The method was evaluated using 3D landmarks located by two experts.
The average error was mm and the average time required to process an image was seconds (<0.001). The volume of the cochlea ranged from 73.96 mm to 106.97 mm, the cochlear length ranged from 36.69 to 45.91 mm at the lateral wall and from 29.12 to 39.05 mm at the organ of Corti.
We propose a method that produces nine different automated measurements of the cochlea: volume of scala tympani, volume of scala vestibuli, central lengths of the two scalae, the scala tympani lateral wall length, and the organ of Corti length in addition to three measurements related to -value.
This automatic cochlear image segmentation and analysis method can help clinician process multimodal cochlear images in approximately 5 seconds using a simple computer. The proposed method is publicly available for free download as an extension for 3D Slicer software.
提出一种从临床三维多模态图像中自动快速分割耳蜗、测量耳蜗长度和体积的方法,该方法在选择人工耳蜗类型、手术规划和机器人手术中具有潜在作用。
使用了来自两个不同国家的两个数据集。这些数据集包括来自三种模态的 219 个耳蜗的临床三维图像:CT、CBCT 和 MR。这些数据集包括不同年龄、性别和人工耳蜗类型。我们提出了一种基于图谱模型的耳蜗分割和测量方法,该方法基于高分辨率 CT 模型和 v 值。该方法使用由两位专家定位的 3D 地标进行评估。
平均误差为 mm,处理一幅图像所需的平均时间为 秒(<0.001)。耳蜗体积范围为 73.96mm 至 106.97mm,耳蜗长度在外侧壁范围为 36.69mm 至 45.91mm,在 Corti 器范围为 29.12mm 至 39.05mm。
我们提出了一种方法,可以自动测量耳蜗的九个不同参数:耳蜗的鼓阶容积、前庭阶容积、两个阶的中心长度、鼓阶外侧壁长度和 Corti 器长度,以及三个与 v 值相关的测量参数。
这种自动耳蜗图像分割和分析方法可以帮助临床医生在大约 5 秒内使用简单的计算机处理多模态耳蜗图像。该方法已作为 3D Slicer 软件的扩展免费提供。