Suppr超能文献

基于深度学习的 MRI 内耳全自动分割。

Deep learning for the fully automated segmentation of the inner ear on MRI.

机构信息

The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands.

Department of Radiology and Nuclear Imaging, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands.

出版信息

Sci Rep. 2021 Feb 3;11(1):2885. doi: 10.1038/s41598-021-82289-y.

Abstract

Segmentation of anatomical structures is valuable in a variety of tasks, including 3D visualization, surgical planning, and quantitative image analysis. Manual segmentation is time-consuming and deals with intra and inter-observer variability. To develop a deep-learning approach for the fully automated segmentation of the inner ear in MRI, a 3D U-net was trained on 944 MRI scans with manually segmented inner ears as reference standard. The model was validated on an independent, multicentric dataset consisting of 177 MRI scans from three different centers. The model was also evaluated on a clinical validation set containing eight MRI scans with severe changes in the morphology of the labyrinth. The 3D U-net model showed precise Dice Similarity Coefficient scores (mean DSC-0.8790) with a high True Positive Rate (91.5%) and low False Discovery Rate and False Negative Rates (14.8% and 8.49% respectively) across images from three different centers. The model proved to perform well with a DSC of 0.8768 on the clinical validation dataset. The proposed auto-segmentation model is equivalent to human readers and is a reliable, consistent, and efficient method for inner ear segmentation, which can be used in a variety of clinical applications such as surgical planning and quantitative image analysis.

摘要

解剖结构的分割在各种任务中都很有价值,包括 3D 可视化、手术规划和定量图像分析。手动分割既耗时又费力,还存在观察者内和观察者间的变异性。为了开发一种用于 MRI 中内耳全自动分割的深度学习方法,我们在 944 个具有手动分割内耳作为参考标准的 MRI 扫描上训练了一个 3D U-net。该模型在一个由三个不同中心的 177 个 MRI 扫描组成的独立、多中心数据集上进行了验证。该模型还在一个包含 8 个具有迷路形态严重变化的 MRI 扫描的临床验证数据集上进行了评估。该 3D U-net 模型在来自三个不同中心的图像上表现出精确的 Dice 相似系数评分(平均 DSC-0.8790),具有较高的真阳性率(91.5%)和较低的假阳性率、假阴性率(分别为 14.8%和 8.49%)。该模型在临床验证数据集上的 DSC 为 0.8768,表现良好。该自动分割模型与人类读者相当,是一种可靠、一致、高效的内耳分割方法,可用于各种临床应用,如手术规划和定量图像分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e502/7858625/bddd6dbf1e7f/41598_2021_82289_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验