Suppr超能文献

使用谱图特征对 Heschl 回的形态进行判别特征描述。

A Discriminative Characterization of Heschl's Gyrus Morphology using Spectral Graph Features.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3577-3581. doi: 10.1109/EMBC46164.2021.9630788.

Abstract

Heschl's Gyrus (HG), which hosts the primary auditory cortex, exhibits large variability not only in size but also in its gyrification patterns, within (i.e., between hemispheres) and between individuals. Conventional structural measures such as volume, surface area and thickness do not capture the full morphological complexity of HG, in particular, with regards to its shape. We present a method for characterizing the morphology of HG in terms of Laplacian eigenmodes of surface-based and volume-based graph representations of its structure, and derive a set of spectral graph features that can be used to discriminate HG subtypes. We applied this method to a dataset of 177 adults previously shown to display considerable variability in the shape of their HG, including data from amateur and professional musicians, as well as non-musicians. Results show the superiority of the proposed spectral graph features over conventional ones in differentiating HG subtypes, in particular, single HG versus Common Stem Duplications (CSDs). We anticipate the proposed shape features to be found beneficial in the domains of language, music and associated pathologies, in which variability of HG morphology has previously been established.

摘要

Heschl 回(HG)是初级听觉皮层的所在地,其大小和脑回模式在个体内部(即半球之间)和个体之间存在很大的可变性。传统的结构测量方法,如体积、表面积和厚度,无法完全捕捉到 HG 的形态复杂性,特别是在其形状方面。我们提出了一种方法,用于根据基于表面的和基于体积的结构图表示的拉普拉斯特征值来描述 HG 的形态,并得出了一组可用于区分 HG 亚型的谱图特征。我们将该方法应用于一组 177 名成年人的数据,这些成年人的 HG 形状显示出相当大的可变性,包括业余和专业音乐家以及非音乐家的数据。结果表明,与传统特征相比,所提出的谱图特征在区分 HG 亚型方面具有优越性,特别是单 HG 与常见干重复(CSD)。我们预计所提出的形状特征在语言、音乐和相关病理学领域将是有益的,因为之前已经确定了 HG 形态的可变性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验