Behjat Hamid, Tarun Anjali, Abramian David, Larsson Martin, Ville Dimitri Van De
Neuro-X InstituteÉcole Polytechnique Fédérale de Lausanne (EPFL) 1202 Geneva Switzerland.
Department of Biomedical EngineeringLund University SE-221 00 Lund Sweden.
IEEE Open J Eng Med Biol. 2023 Apr 17;6:158-167. doi: 10.1109/OJEMB.2023.3267726. eCollection 2025.
Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level.
传统上,脑结构图谱仅限于将节点定义为图谱中的灰质区域,边反映节点对之间轴突投射的密度。在这里,我们明确地将脑掩码内的整个体素集建模为高分辨率、个体特异性图谱的节点。我们使用从扩散磁共振成像数据导出的扩散张量和方向分布函数来定义局部体素到体素连接的强度。我们研究了人类连接体项目数据上图谱的拉普拉斯谱性质。然后,我们通过一种普罗克汝斯验证方案评估拉普拉斯特征模式在个体间的变异性程度。最后,我们通过图谱信号处理证明功能磁共振成像数据受潜在解剖结构影响的程度。图谱拉普拉斯特征模式表现出高度分辨的空间轮廓,反映了与主要白质通路相对应的分布式模式。我们表明,这种高分辨率图谱特征空间的内在维度仅是图谱维度的一小部分。通过将任务和静息态数据投影到低频图谱拉普拉斯特征模式上,我们表明大脑活动可以由一小部分低频成分很好地近似。所提出的图谱为研究大脑开辟了新途径,无论是通过图谱或谱图理论探索其组织特性,还是将它们视为在个体水平上观察大脑功能的支架。