文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自动多染色切片图像在组织病理学中的配准。

Automatic Multi-Stain Registration of Whole Slide Images in Histopathology.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3622-3625. doi: 10.1109/EMBC46164.2021.9629970.


DOI:10.1109/EMBC46164.2021.9629970
PMID:34892022
Abstract

Joint analysis of multiple biomarker images and tissue morphology is important for disease diagnosis, treatment planning and drug development. It requires cross-staining comparison among Whole Slide Images (WSIs) of immune-histochemical and hematoxylin and eosin (H&E) microscopic slides. However, automatic, and fast cross-staining alignment of enormous gigapixel WSIs at single-cell precision is challenging. In addition to morphological deformations introduced during slide preparation, there are large variations in cell appearance and tissue morphology across different staining. In this paper, we propose a two-step automatic feature-based cross-staining WSI alignment to assist localization of even tiny metastatic foci in the assessment of lymph node. Image pairs were aligned allowing for translation, rotation, and scaling. The registration was performed automatically by first detecting landmarks in both images, using the scale-invariant image transform (SIFT), followed by the fast sample consensus (FSC) protocol for finding point correspondences and finally aligned the images. The Registration results were evaluated using both visual and quantitative criteria using the Jaccard index. The average Jaccard similarity index of the results produced by the proposed system is 0.942 when compared with the manual registration.

摘要

联合分析多个生物标志物图像和组织形态对于疾病诊断、治疗计划和药物开发非常重要。它需要对免疫组织化学和苏木精和伊红(H&E)显微镜载玻片的全玻片图像(WSI)进行交叉染色比较。然而,在单细胞精度下自动、快速地对齐巨大的千兆像素 WSI 具有挑战性。除了在幻灯片准备过程中引入的形态变形外,不同染色之间的细胞外观和组织形态也存在很大差异。在本文中,我们提出了一种基于特征的两步自动交叉染色 WSI 对齐方法,以协助定位淋巴结评估中即使是微小的转移性焦点。允许平移、旋转和缩放来对齐图像对。首先使用尺度不变图像变换(SIFT)在两幅图像中检测地标,然后使用快速样本共识(FSC)协议找到点对应关系,并最终对齐图像,从而自动执行配准。使用 Jaccard 指数的视觉和定量标准评估配准结果。与手动配准相比,所提出系统产生的结果的平均 Jaccard 相似性指数为 0.942。

相似文献

[1]
Automatic Multi-Stain Registration of Whole Slide Images in Histopathology.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[2]
Fast cross-staining alignment of gigapixel whole slide images with application to prostate cancer and breast cancer analysis.

Sci Rep. 2022-7-8

[3]
Automatic registration of multi-modal microscopy images for integrative analysis of prostate tissue sections.

BMC Cancer. 2013-9-5

[4]
Automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on whole tissue sections in breast carcinoma.

Diagn Pathol. 2020-5-29

[5]
RegWSI: Whole slide image registration using combined deep feature- and intensity-based methods: Winner of the ACROBAT 2023 challenge.

Comput Methods Programs Biomed. 2024-6

[6]
An orientation-free ring feature descriptor with stain-variability normalization for pathology image matching.

Comput Biol Med. 2023-12

[7]
Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.

JAMA Netw Open. 2020-5-1

[8]
Fast Segmentation of Metastatic Foci in H&E Whole-Slide Images for Breast Cancer Diagnosis.

Diagnostics (Basel). 2022-4-14

[9]
Quantitative assessment of H&E staining for pathology: development and clinical evaluation of a novel system.

Diagn Pathol. 2024-2-23

[10]
A Multi-Stain Breast Cancer Histological Whole-Slide-Image Data Set from Routine Diagnostics.

Sci Data. 2023-8-24

引用本文的文献

[1]
A Preliminary Investigation into Search and Matching for Tumor Discrimination in World Health Organization Breast Taxonomy Using Deep Networks.

Mod Pathol. 2024-2

[2]
Spatial correlation of 2D hard-tissue histology with 3D microCT scans through 3D printed phantoms.

Sci Rep. 2023-10-28

[3]
Machine learning in neuro-oncology: toward novel development fields.

J Neurooncol. 2022-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索