Suppr超能文献

用于慢性疼痛的周围神经刺激的鲁棒控制:具有结构化不确定性的脊髓宽动态范围神经元建模。

Towards Robust Control of PNS for Chronic Pain: Modeling Spinal Cord Wide-Dynamic Range Neurons with Structured Uncertainty.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4399-4402. doi: 10.1109/EMBC46164.2021.9630771.

Abstract

Pain is a protective physiological system essential for survival. However, it can malfunction and create a debilitating disease known as chronic pain (CP), which is primarily treated with drugs that can produce negative side effects (e.g., opioid addiction). Peripheral nerve stimulation (PNS) is a promising alternative therapy; it has fewer negative side effects but has been associated with suboptimal efficacy since its mechanisms are unclear, and the current therapies are primarily open-loop (i.e. manual adjustment). To adapt to the needs of the user, the next step in advancing PNS therapies is to "close the loop" by using feedback to adjust the stimulation in real-time. A critical step in developing closed-loop PNS treatment is a deeper understanding of pain processing in the dorsal horn (DH) of the spinal cord, which is the first central relay station on the pain pathway. Mechanistic models of the DH have been developed to investigate modulation mechanisms but are non-linear, high-dimensional, and thus difficult to analyze. In this paper, we propose a novel application of structured uncertainty to model and analyze the nonlinear dynamical nature of the DH, and provide the foundation for developing robust PNS controllers using µ-synthesis. Using electrophysiological DH recordings from both naive and nerve-injured rats during windup stimulation, we build two separate models, which contains a linear time-invariant nominal (average) model, and structured uncertainty to quantify the nonlinear deviations in response from the nominal model. Using the structured uncertainty, we analyze the naive and injured models to discover underlying DH dynamics not identifiable using traditional methods, such as spike counting.

摘要

疼痛是一种保护生理系统,对生存至关重要。然而,它可能会出现故障,导致一种衰弱性疾病,即慢性疼痛(CP)。CP 主要用药物治疗,但这些药物可能会产生负面副作用(例如,阿片类药物成瘾)。周围神经刺激(PNS)是一种很有前途的替代疗法;它的负面副作用较少,但由于其机制不清楚,并且当前的治疗方法主要是开环(即手动调整),因此疗效并不理想。为了适应用户的需求,推进 PNS 治疗的下一步是通过使用反馈实时调整刺激来“闭环”。开发闭环 PNS 治疗的关键步骤是更深入地了解脊髓背角(DH)中的疼痛处理,DH 是疼痛途径中的第一个中枢中继站。已经开发了 DH 的机械模型来研究调制机制,但它们是非线性的,高维的,因此难以分析。在本文中,我们提出了一种将结构化不确定性应用于模型和分析 DH 的非线性动力学特性的新方法,并为使用 µ 综合法开发稳健的 PNS 控制器提供了基础。我们使用来自未受伤和神经损伤大鼠的 DH 电生理记录在 windup 刺激期间,我们构建了两个单独的模型,其中包含一个线性时不变标称(平均)模型和结构化不确定性,以量化响应相对于标称模型的非线性偏差。使用结构化不确定性,我们分析了未受伤和受伤的模型,以发现传统方法(例如,尖峰计数)无法识别的潜在 DH 动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a255/9767703/da39ae823e6e/nihms-1855384-f0001.jpg

相似文献

2
Modeling Responses to Peripheral Nerve Stimulation in the Dorsal Horn.模拟背角对周围神经刺激的反应
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:2324-2327. doi: 10.1109/EMBC.2019.8856566.

本文引用的文献

1
Modeling Responses to Peripheral Nerve Stimulation in the Dorsal Horn.模拟背角对周围神经刺激的反应
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:2324-2327. doi: 10.1109/EMBC.2019.8856566.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验