Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4428-4431. doi: 10.1109/EMBC46164.2021.9630368.
Neuromodulation treatments for chronic pain are programmed with limited knowledge of how electrical stimulation of nerve fibers affects the dynamic response of pain-processing neurons in the spinal cord and the brain. By modeling these effects with tractable representations, we may be able to improve efficacy of stimulation therapy. However, pain transmitting neurons in the dorsal horn of the spinal cord, the first pain relay station in the nervous system, have complex responses to peripheral nerve stimulation (PNS) with nonlinearities and history effects. Wide-dynamic range (WDR) neurons are well studied in pain models and respond to peripheral noxious and non-noxious stimuli. We propose to use linear parameter varying (LPV) models to capture PNS responses of WDR neurons of the deep lamina in the dorsal horn in the spinal cord. Here we show that LPV models perform better than a single linear time-invariant (LTI) model in representing the responses of the WDR neurons to widely varying amplitudes of PNS current. In the future, we can use these models alongside LPV control techniques to design closed-loop PNS stimulation that may accomplish optimal pain treatment goals.Clinical Relevance- Electrical nerve stimulation as a therapy for chronic pain is in need of a more informed approach to programming. By describing the effects of stimulation on the pain system with tractable mathematical models, we may be able to titrate the stimulation to more effectively treat chronic pain.
神经调节治疗慢性疼痛的方案是基于有限的知识制定的,这些知识涉及电刺激神经纤维如何影响脊髓和大脑中疼痛处理神经元的动态反应。通过使用可处理的表示来模拟这些影响,我们或许能够提高刺激疗法的疗效。然而,脊髓背角中的疼痛传递神经元是神经系统中的第一个疼痛中继站,它们对周围神经刺激(PNS)具有复杂的反应,具有非线性和历史效应。宽动态范围(WDR)神经元在疼痛模型中得到了很好的研究,它们对周围的有害和无害刺激有反应。我们提议使用线性参数变化(LPV)模型来捕获脊髓背角深部层的 WDR 神经元对 PNS 的反应。在这里,我们表明 LPV 模型在表示 WDR 神经元对 PNS 电流的广泛变化幅度的反应方面比单个线性时不变(LTI)模型表现更好。在未来,我们可以将这些模型与 LPV 控制技术一起用于设计闭环 PNS 刺激,以实现最佳的疼痛治疗目标。临床相关性-作为慢性疼痛治疗方法的电神经刺激需要更明智的编程方法。通过使用可处理的数学模型来描述刺激对疼痛系统的影响,我们或许能够更有效地调整刺激,以治疗慢性疼痛。