Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:5469-5472. doi: 10.1109/EMBC46164.2021.9630975.
In the last decades, a considerable effort has been devoted to quantify complexity in physiological time series, with a particular focus on heart rate variability (HRV). To this end, exemplary quantifiers including Approximate Entropy and Sample Entropy have successfully been applied by leveraging on statistical approximation and further parametrization through the definition of tolerance and embedding dimension, among others. In this study, we investigate the use of the Algorithmic Information Content, which is estimated through an effective compression algorithm, to quantify partition-based Kolmogorov-Sinai (K-S) entropy on HRV series. We test such a K-S estimate on real data gathered from the Fantasia database, aiming to discern young vs. elderly complex dynamics. Experimental results show that elderly people are associated with a lower HRV complexity and a more predictable behavior, with significantly lower partition-based K-S entropy than the young adults. We conclude that partition-based K-S entropy may effectively be used to investigate pathological conditions in the cardiovascular system, complementing state-of-the-art methods for complexity assessment.
在过去的几十年中,人们付出了相当大的努力来量化生理时间序列中的复杂性,特别是关注心率变异性 (HRV)。为此,人们成功地应用了近似熵和样本熵等典型的量化指标,通过统计逼近和进一步通过定义容差和嵌入维度等参数化来实现。在这项研究中,我们研究了使用算法信息内容 (Algorithmic Information Content) 通过有效的压缩算法来量化基于分区的柯尔莫哥洛夫-辛钦 (Kolmogorov-Sinai, K-S) 熵在 HRV 系列上的应用。我们在 Fantasia 数据库中收集的真实数据上测试了这种 K-S 估计,旨在区分年轻人和老年人的复杂动态。实验结果表明,老年人的 HRV 复杂性较低,行为可预测性较高,基于分区的 K-S 熵明显低于年轻人。我们得出结论,基于分区的 K-S 熵可有效地用于研究心血管系统中的病理状况,补充用于复杂性评估的最新方法。