Suppr超能文献

基于分区的心率变异性的柯尔莫哥洛夫-辛钦熵的量化:年轻与老年的研究。

Quantifying partition-based Kolmogorov-Sinai Entropy on Heart Rate Variability: a young vs. elderly study.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:5469-5472. doi: 10.1109/EMBC46164.2021.9630975.

Abstract

In the last decades, a considerable effort has been devoted to quantify complexity in physiological time series, with a particular focus on heart rate variability (HRV). To this end, exemplary quantifiers including Approximate Entropy and Sample Entropy have successfully been applied by leveraging on statistical approximation and further parametrization through the definition of tolerance and embedding dimension, among others. In this study, we investigate the use of the Algorithmic Information Content, which is estimated through an effective compression algorithm, to quantify partition-based Kolmogorov-Sinai (K-S) entropy on HRV series. We test such a K-S estimate on real data gathered from the Fantasia database, aiming to discern young vs. elderly complex dynamics. Experimental results show that elderly people are associated with a lower HRV complexity and a more predictable behavior, with significantly lower partition-based K-S entropy than the young adults. We conclude that partition-based K-S entropy may effectively be used to investigate pathological conditions in the cardiovascular system, complementing state-of-the-art methods for complexity assessment.

摘要

在过去的几十年中,人们付出了相当大的努力来量化生理时间序列中的复杂性,特别是关注心率变异性 (HRV)。为此,人们成功地应用了近似熵和样本熵等典型的量化指标,通过统计逼近和进一步通过定义容差和嵌入维度等参数化来实现。在这项研究中,我们研究了使用算法信息内容 (Algorithmic Information Content) 通过有效的压缩算法来量化基于分区的柯尔莫哥洛夫-辛钦 (Kolmogorov-Sinai, K-S) 熵在 HRV 系列上的应用。我们在 Fantasia 数据库中收集的真实数据上测试了这种 K-S 估计,旨在区分年轻人和老年人的复杂动态。实验结果表明,老年人的 HRV 复杂性较低,行为可预测性较高,基于分区的 K-S 熵明显低于年轻人。我们得出结论,基于分区的 K-S 熵可有效地用于研究心血管系统中的病理状况,补充用于复杂性评估的最新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验