Suppr超能文献

一种用于去噪新生儿胸部声音分离的新非负矩阵协同分解方法。

A New Non-Negative Matrix Co-Factorisation Approach for Noisy Neonatal Chest Sound Separation.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:5668-5673. doi: 10.1109/EMBC46164.2021.9630256.

Abstract

Obtaining high quality heart and lung sounds enables clinicians to accurately assess a newborns cardio-respiratory health and provide timely care. However, noisy chest sound recordings are common, hindering timely and accurate assessment. A new Non-negative Matrix Co-Factorisation based approach is proposed to separate noisy chest sound recordings into heart, lung and noise components to address this problem. This method is achieved through training with 20 high quality heart and lung sounds, in parallel with separating the sounds of the noisy recording. The method was tested on 68 10-second noisy recordings containing both heart and lung sounds and compared to the current state of the art Non-negative Matrix Factorisation methods. Results show significant improvements in heart and lung sound quality scores respectively, and improved accuracy of 3.6bpm and 1.2bpm in heart and breathing rate estimation respectively, when compared to existing methods.

摘要

获取高质量的心音和肺音可使临床医生准确评估新生儿的心肺健康状况并提供及时的护理。然而,嘈杂的胸部录音很常见,这会阻碍及时和准确的评估。为了解决这个问题,提出了一种新的基于非负矩阵协同分解的方法,将嘈杂的胸部录音分离为心音、肺音和噪声分量。该方法通过使用 20 个高质量的心音和肺音进行训练,并与嘈杂录音的声音同时分离来实现。该方法在包含心音和肺音的 68 个 10 秒嘈杂录音上进行了测试,并与当前最先进的非负矩阵分解方法进行了比较。结果表明,与现有方法相比,心音和肺音质量评分分别有显著提高,在心率和呼吸率估计方面的准确性分别提高了 3.6bpm 和 1.2bpm。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验