Suppr超能文献

用于远程医疗应用的稳健心率和呼吸率估计的新生儿心肺音质量评估。

Neonatal Heart and Lung Sound Quality Assessment for Robust Heart and Breathing Rate Estimation for Telehealth Applications.

出版信息

IEEE J Biomed Health Inform. 2021 Dec;25(12):4255-4266. doi: 10.1109/JBHI.2020.3047602. Epub 2021 Dec 6.

Abstract

With advances in digital stethoscopes, internet of things, signal processing and machine learning, chest sounds can be easily collected and transmitted to the cloud for remote monitoring and diagnosis. However, low quality of recordings complicates remote monitoring and diagnosis, particularly for neonatal care. This paper proposes a new method to objectively and automatically assess the signal quality to improve the accuracy and reliability of heart rate (HR) and breathing rate (BR) estimation from noisy neonatal chest sounds. A total of 88 10-second long chest sounds were taken from 76 preterm and full-term babies. Six annotators independently assessed the signal quality, number of detectable beats, and breathing periods from these recordings. For quality classification, 187 and 182 features were extracted from heart and lung sounds, respectively. After feature selection, class balancing, and hyperparameter optimization, a dynamic binary classification model was trained. Then HR and BR were automatically estimated from the chest sound and several approaches were compared.The results of subject-wise leave-one-out cross-validation, showed that the model distinguished high and low quality recordings in the test set with 96% specificity, 81% sensitivity and 93% accuracy for heart sounds, and 86% specificity, 69% sensitivity and 82% accuracy for lung sounds. The HR and BR estimated from high quality sounds resulted in significantly less median absolute error (4 bpm and 12 bpm difference, respectively) compared to those from low quality sounds. The methods presented in this work, facilitates automated neonatal chest sound auscultation for future telehealth applications.

摘要

随着数字听诊器、物联网、信号处理和机器学习的进步,胸部声音可以很容易地被采集并传输到云端进行远程监测和诊断。然而,记录质量低使得远程监测和诊断变得复杂,尤其是对于新生儿护理而言。本文提出了一种新的方法来客观且自动地评估信号质量,以提高从嘈杂的新生儿胸部声音中估计心率 (HR) 和呼吸率 (BR) 的准确性和可靠性。总共从 76 名早产儿和足月儿采集了 88 段 10 秒长的胸部声音。六位注释员分别评估了这些记录的信号质量、可检测节拍数和呼吸周期。对于质量分类,从心音和肺音中分别提取了 187 和 182 个特征。经过特征选择、类别平衡和超参数优化后,训练了一个动态二进制分类模型。然后,从胸部声音自动估计 HR 和 BR,并比较了几种方法。在受试者逐个进行的留一交叉验证的结果表明,该模型在测试集中以 96%的特异性、81%的敏感性和 93%的准确性区分高质量和低质量的记录,对于心音,以及 86%的特异性、69%的敏感性和 82%的准确性对于肺音。与来自低质量声音的 HR 和 BR 相比,来自高质量声音的 HR 和 BR 估计结果的中位数绝对误差显著更小(分别相差 4 次/分钟和 12 次/分钟)。本文提出的方法有助于未来远程医疗应用的自动新生儿胸部听诊。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验