Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:5860-5863. doi: 10.1109/EMBC46164.2021.9629838.
Calcium imaging has great potential to be applied to online brain-machine interfaces (BMIs). As opposed to two-photon imaging settings, a one-photon microendoscopic imaging device can be chronically implanted and is subject to little motion artifacts. Traditionally, one-photon microendoscopic calcium imaging data are processed using the constrained nonnegative matrix factorization (CNMFe) algorithm, but this batched processing algorithm cannot be applied in real-time. An online analysis of calcium imaging data algorithm (or OnACIDe) has been proposed, but OnACIDe updates the neural components by repeatedly performing neuron identification frame-by-frame, which may decelerate the update speed if applying to online BMIs. For BMI applications, the ability to track a stable population of neurons in real-time has a higher priority over accurately identifying all the neurons in the field of view. By leveraging the fact that 1) microendoscopic recordings are rather stable with little motion artifacts and 2) the number of neurons identified in a short training period is sufficient for potential online BMI tasks such as cursor movements, we proposed the short-training CNMFe algorithm (stCNMFe) that skips motion correction and neuron identification processes to enable a more efficient BMI training program in a one-photon microendoscopic setting.
钙成像技术在在线脑机接口(BMI)中有很大的应用潜力。与双光子成像设置不同,单光子微内窥镜成像设备可以进行慢性植入,并且受到的运动伪影较小。传统上,单光子微内窥镜钙成像数据采用约束非负矩阵分解(CNMFe)算法进行处理,但这种批处理算法不能实时应用。已经提出了一种在线钙成像数据分析算法(或 OnACIDe),但 OnACIDe 通过逐帧重复执行神经元识别来更新神经成分,如果应用于在线 BMI,可能会降低更新速度。对于 BMI 应用,实时跟踪稳定的神经元群体的能力比准确识别视野中的所有神经元更为重要。利用以下事实:1)微内窥镜记录非常稳定,运动伪影较小;2)在短时间的训练期间识别出的神经元数量足以满足光标移动等潜在在线 BMI 任务,我们提出了短时间训练 CNMFe 算法(stCNMFe),该算法跳过运动校正和神经元识别过程,从而在单光子微内窥镜设置中实现更高效的 BMI 训练程序。