Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:5893-5896. doi: 10.1109/EMBC46164.2021.9629679.
P300 speller is a brain-computer interface (BCI) speller system, used for enabling human with different paralyzing disorders, such as amyotrophic lateral sclerosis (ALS), to communicate with the outer world by processing electroencephalography (EEG) signals. Different people have different latency and amplitude of the P300 event-related potential (ERP) component, which is used as the main feature for detecting the target character. In order to achieve robust results for different subjects using generic training (GT), the ensemble learning classifiers are proposed based on linear discriminant analysis (LDA), support vector machine (SVM), k-nearest neighbors (kNN), and convolutional neural network (CNN). The proposed models are trained using data from healthy subjects and tested on both healthy subjects and ALS patients. The results show that the fusion of LDA, kNN and SVM provides the most accurate results, achieving the accuracy of 99% for healthy subjects and about 85% for ALS patients.
P300 拼写器是一种脑机接口 (BCI) 拼写器系统,用于使患有不同瘫痪疾病的人,如肌萎缩侧索硬化症 (ALS),通过处理脑电图 (EEG) 信号与外部世界进行交流。不同的人具有不同的 P300 事件相关电位 (ERP) 成分的潜伏期和幅度,该成分被用作检测目标字符的主要特征。为了使用通用训练 (GT) 为不同的受试者实现稳健的结果,提出了基于线性判别分析 (LDA)、支持向量机 (SVM)、k-最近邻 (kNN) 和卷积神经网络 (CNN) 的集成学习分类器。使用健康受试者的数据对所提出的模型进行训练,并在健康受试者和 ALS 患者上进行测试。结果表明,LDA、kNN 和 SVM 的融合提供了最准确的结果,对健康受试者的准确率达到 99%,对 ALS 患者的准确率约为 85%。