Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.
Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11794, USA.
Plant Physiol. 2022 Mar 4;188(3):1537-1549. doi: 10.1093/plphys/kiab577.
Plant plastidial acyl-acyl carrier protein (ACP) desaturases are a soluble class of diiron-containing enzymes that are distinct from the diiron-containing integral membrane desaturases found in plants and other organisms. The archetype of this class is the stearoyl-ACP desaturase which converts stearoyl-ACP into oleoyl (18:1Δ9cis)-ACP. Several variants expressing distinct regioselectivity have been described including a Δ6-16:0-ACP desaturase from black-eyed Susan vine (Thunbergia alata). We solved a crystal structure of the T. alata desaturase at 2.05 Å resolution. Using molecular dynamics (MD) simulations, we identified a low-energy complex between 16:0-ACP and the desaturase that would position C6 and C7 of the acyl chain adjacent to the diiron active site. The model complex was used to identify mutant variants that could convert the T. alata Δ6 desaturase to Δ9 regioselectivity. Additional modeling between ACP and the mutant variants confirmed the predicted regioselectivity. To validate the in-silico predictions, we synthesized two variants of the T. alata desaturase and analyzed their reaction products using gas chromatography-coupled mass spectrometry. Assay results confirmed that mutants designed to convert T. alata Δ6 to Δ9 selectivity exhibited the predicted changes. In complementary experiments, variants of the castor desaturase designed to convert Δ9 to Δ6 selectivity lost some of their Δ9 desaturation ability and gained the ability to desaturate at the Δ6 position. The computational workflow for revealing the mechanistic understanding of regioselectivity presented herein lays a foundation for designing acyl-ACP desaturases with novel selectivities to increase the diversity of monoenes available for bioproduct applications.
植物质体酰基-酰基载体蛋白 (ACP) 去饱和酶是一类可溶性的二铁酶,与植物和其他生物中发现的含二铁的整合膜去饱和酶不同。该类的原型是硬脂酰-ACP 去饱和酶,它将硬脂酰-ACP 转化为油酸 (18:1Δ9cis)-ACP。已经描述了几种表达不同区域选择性的变体,包括来自黑眼苏珊藤(Thunbergia alata)的 Δ6-16:0-ACP 去饱和酶。我们以 2.05 Å 的分辨率解决了 T. alata 去饱和酶的晶体结构。使用分子动力学 (MD) 模拟,我们确定了 16:0-ACP 与去饱和酶之间的低能复合物,该复合物将酰链的 C6 和 C7 定位在二铁活性部位附近。模型复合物用于识别可将 T. alata Δ6 去饱和酶转化为 Δ9 区域选择性的突变变体。在 ACP 和突变变体之间的额外建模证实了预测的区域选择性。为了验证计算机预测,我们合成了 T. alata 去饱和酶的两个变体,并使用气相色谱-质谱联用分析了它们的反应产物。测定结果证实,设计用于将 T. alata Δ6 转化为 Δ9 选择性的突变体表现出预期的变化。在互补实验中,设计用于将 Δ9 转化为 Δ6 选择性的蓖麻去饱和酶变体失去了一些 Δ9 去饱和能力,并获得了在 Δ6 位置去饱和的能力。本文提出的揭示区域选择性的机制理解的计算工作流程为设计具有新型选择性的酰基-ACP 去饱和酶奠定了基础,以增加可用于生物制品应用的单烯的多样性。