Suppr超能文献

线虫化学感觉和运动电路中 T 迷宫导航的学习建模。

Modelling learning in Caenorhabditis elegans chemosensory and locomotive circuitry for T-maze navigation.

机构信息

Department of Mathematics, University of Michigan, Ann Arbor, MI, USA.

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.

出版信息

Eur J Neurosci. 2022 Jan;55(2):354-376. doi: 10.1111/ejn.15560. Epub 2022 Jan 9.

Abstract

Recently, a new type of Caenorhabditis elegans associative learning was reported, where nematodes learn to reach a target arm in an empty T-maze, after they have successfully located reward (food) in the same side arm of a similar, baited, training maze. Here, we present a simplified mathematical model of C. elegans chemosensory and locomotive circuitry that replicates C. elegans navigation in a T-maze and predicts the underlying mechanisms generating maze learning. Based on known neural circuitry, the model circuit responds to food-released chemical cues by modulating motor neuron activity that drives simulated locomotion. We show that, through modulation of interneuron activity, such a circuit can mediate maze learning by acquiring a turning bias, even after a single training session. Simulated nematode maze navigation during training conditions in food-baited mazes and during testing conditions in empty mazes is validated by comparing simulated behaviour with new experimental video data, extracted through the implementation of a custom-made maze tracking algorithm. Our work provides a mathematical framework for investigating the neural mechanisms underlying this novel learning behaviour in C. elegans. Model results predict neuronal components involved in maze and spatial learning and identify target neurons and potential neural mechanisms for future experimental investigations into this learning behaviour.

摘要

最近,人们报道了一种新型的秀丽隐杆线虫联想学习,线虫在成功定位到类似的、有诱饵的训练迷宫同侧臂中的奖励(食物)后,学会了在空 T 形迷宫中到达目标臂。在这里,我们提出了一个简化的秀丽隐杆线虫化学感觉和运动电路的数学模型,该模型复制了秀丽隐杆线虫在 T 形迷宫中的导航,并预测了产生迷宫学习的潜在机制。基于已知的神经回路,模型电路通过调节驱动模拟运动的运动神经元活动来响应食物释放的化学线索。我们表明,通过中间神经元活动的调制,这样的电路可以通过获得转向偏差来介导迷宫学习,即使在单次训练后也是如此。通过将模拟线虫在食物诱饵迷宫中的训练条件下和在空迷宫中的测试条件下的导航与通过实现自定义迷宫跟踪算法提取的新实验视频数据进行比较,验证了模拟线虫在食物诱饵迷宫中的导航和在空迷宫中的测试条件下的模拟行为。我们的工作为研究秀丽隐杆线虫这种新型学习行为的神经机制提供了一个数学框架。模型结果预测了参与迷宫和空间学习的神经元成分,并确定了用于未来对这种学习行为进行实验研究的目标神经元和潜在神经机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2551/9302700/d9faa438fe8d/EJN-55-354-g011.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验