Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
Philos Trans R Soc Lond B Biol Sci. 2018 Sep 10;373(1758):20170371. doi: 10.1098/rstb.2017.0371.
The nematode is a tractable model system to study locomotion, sensory navigation and decision-making. In its natural habitat, it is thought to navigate complex multisensory environments in order to find food and mating partners, while avoiding threats like predators or toxic environments. While research in past decades has shed much light on the functions and mechanisms of selected sensory neurons, we are just at the brink of understanding how sensory information is integrated by interneuron circuits for action selection in the worm. Recent technological advances have enabled whole-brain Ca imaging and Ca imaging of neuronal activity in freely moving worms. A common principle emerging across multiple studies is that most interneuron activities are tightly coupled to the worm's instantaneous behaviour; notably, these observations encompass neurons receiving direct sensory neuron inputs. The new findings suggest that in the brain, sensory and motor representations are integrated already at the uppermost sensory processing layers. Moreover, these results challenge a perhaps more intuitive view of sequential feed-forward sensory pathways that converge onto premotor interneurons and motor neurons. We propose that sensorimotor integration occurs rather in a distributed dynamical fashion. In this perspective article, we will explore this view, discuss the challenges and implications of these discoveries on the interpretation and design of neural activity experiments, and discuss possible functions. Furthermore, we will discuss the broader context of similar findings in fruit flies and rodents, which suggest generalizable principles that can be learnt from this amenable nematode model organism.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling at cellular resolution'.
线虫是研究运动、感觉导航和决策的一种易于处理的模型系统。在其自然栖息地中,它被认为是在复杂的多感觉环境中导航,以便寻找食物和交配伴侣,同时避免像捕食者或有毒环境这样的威胁。尽管过去几十年的研究已经阐明了选定感觉神经元的功能和机制,但我们才刚刚开始了解感觉信息如何通过中间神经元电路整合用于线虫的行动选择。最近的技术进步使全脑钙成像和自由移动线虫的神经元活动钙成像成为可能。多个研究中出现的一个共同原则是,大多数中间神经元活动与线虫的即时行为紧密耦合;值得注意的是,这些观察结果包括接收直接感觉神经元输入的神经元。新的发现表明,在大脑中,感觉和运动表示已经在上层的感觉处理层中整合。此外,这些结果挑战了一种更直观的关于顺序前馈感觉通路的观点,这些通路汇聚到前运动中间神经元和运动神经元上。我们提出,感觉运动整合是以分布式动力学的方式发生的。在这篇观点文章中,我们将探讨这一观点,讨论这些发现对神经活动实验的解释和设计的挑战和影响,并讨论可能的功能。此外,我们还将讨论在果蝇和啮齿动物中类似发现的更广泛背景,这表明可以从这个易于研究的线虫模型生物中学习到可推广的原则。本文是“从细胞分辨率到行为的连接组:建模”讨论会议的一部分。