Suppr超能文献

个体化参考区间 - 统计方法和考虑因素。

Personalized reference intervals - statistical approaches and considerations.

机构信息

Acibadem Labmed Clinical Laboratories, Istanbul, Turkey.

Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.

出版信息

Clin Chem Lab Med. 2021 Dec 13;60(4):629-635. doi: 10.1515/cclm-2021-1066. Print 2022 Mar 28.

Abstract

For many measurands, physicians depend on population-based reference intervals (popRI), when assessing laboratory test results. The availability of personalized reference intervals (prRI) may provide a means to improve the interpretation of laboratory test results for an individual. prRI can be calculated using estimates of biological and analytical variation and previous test results obtained in a steady-state situation. In this study, we aim to outline statistical approaches and considerations required when establishing and implementing prRI in clinical practice. Data quality assessment, including analysis for outliers and trends, is required prior to using previous test results to estimate the homeostatic set point. To calculate the prRI limits, two different statistical models based on 'prediction intervals' can be applied. The first model utilizes estimates of 'within-person biological variation' which are based on an individual's own data. This model requires a minimum of five previous test results to generate the prRI. The second model is based on estimates of 'within-subject biological variation', which represents an average estimate for a population and can be found, for most measurands, in the EFLM Biological Variation Database. This model can be applied also when there are lower numbers of previous test results available. The prRI offers physicians the opportunity to improve interpretation of individuals' test results, though studies are required to demonstrate if using prRI leads to better clinical outcomes. We recommend that both popRIs and prRIs are included in laboratory reports to aid in evaluating laboratory test results in the follow-up of patients.

摘要

对于许多测量指标,医生在评估实验室检测结果时依赖基于人群的参考区间(popRI)。个性化参考区间(prRI)的可用性可能为个体实验室检测结果的解释提供一种改进方法。prRI 可以使用生物学和分析变异的估计值以及在稳态情况下获得的先前测试结果来计算。在本研究中,我们旨在概述在临床实践中建立和实施 prRI 所需的统计方法和注意事项。在使用先前的测试结果估计体内平衡设定点之前,需要进行数据质量评估,包括异常值和趋势分析。为了计算 prRI 限值,可以应用两种基于“预测区间”的不同统计模型。第一种模型利用基于个体自身数据的“个体内生物学变异”的估计值。该模型需要至少五个先前的测试结果来生成 prRI。第二种模型基于“个体内生物学变异”的估计值,代表人群的平均估计值,并且可以在大多数测量指标的 EFLM 生物学变异数据库中找到。当可用的先前测试结果数量较少时,也可以应用此模型。prRI 为医生提供了改善个体检测结果解释的机会,但需要研究证明使用 prRI 是否会带来更好的临床结果。我们建议在实验室报告中同时包含 popRI 和 prRI,以帮助评估患者随访中的实验室检测结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验