Suppr超能文献

基于尺度注意力沙漏网络的 3D 头部 MRI 中解剖标志自动定位方案。

Automatic location scheme of anatomical landmarks in 3D head MRI based on the scale attention hourglass network.

机构信息

School of Life & Environmental Science, Guilin University of Electronic Technology, Guilin 541004, China.

Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

出版信息

Comput Methods Programs Biomed. 2022 Feb;214:106564. doi: 10.1016/j.cmpb.2021.106564. Epub 2021 Dec 1.

Abstract

BACKGROUND AND OBJECTIVE

An anatomical landmark is biologically meaningful point in medical images and often used for medical image registration. The purpose of this study is to automatically locate anatomical landmarks from 3D medical images.

METHODS

A two-step automatic location scheme of anatomical landmarks in 3D medical image was designed in this study. In the first step, the full convolutional neural network was used for slice detection from a 3D medical image. In the second step, the scale attention hourglass network was used for landmark location in the detected slice and could overcome the difficulty of similar anatomical structures and different image parameters. This method was implemented and tested on four stable anatomical landmarks in 3D head MRI.

RESULTS

A total of 500 and 300 3D head volumes were used for training and testing, respectively. Results showed that the slice detection accuracy reached 85.7% and that the maximum location error was less than one slice. The average accuracy of the four anatomical landmarks in the detected slice reached 87.2%, and the spatial distance was 2.4 ± 2.4, which obtained better performance compared with hourglass network and feature pyramid networks.

CONCLUSIONS

This method can be useful for locating anatomical landmarks in 3D head MRI and provides technical support for medical image registration and big data analysis.

摘要

背景与目的

解剖学标志是医学图像中具有生物学意义的点,常用于医学图像配准。本研究旨在自动定位 3D 医学图像中的解剖学标志。

方法

本研究设计了一种用于 3D 医学图像中解剖学标志的两步自动定位方案。在第一步中,使用全卷积神经网络从 3D 医学图像中进行切片检测。在第二步中,使用尺度注意力沙漏网络进行检测切片中的地标定位,并克服了类似解剖结构和不同图像参数的困难。该方法在 3D 头部 MRI 中的四个稳定解剖标志上进行了实现和测试。

结果

共使用了 500 个和 300 个 3D 头部体积进行训练和测试。结果表明,切片检测准确率达到 85.7%,最大定位误差小于一个切片。在检测切片中四个解剖标志的平均准确率达到 87.2%,空间距离为 2.4±2.4,与沙漏网络和特征金字塔网络相比,性能得到了改善。

结论

该方法可用于定位 3D 头部 MRI 中的解剖学标志,为医学图像配准和大数据分析提供技术支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验