Suppr超能文献

纳米碳框架负载的超细 MoC@MoO 纳米团簇用于光热增强的肿瘤特异性串联催化治疗。

Nanocarbon Framework-Supported Ultrafine MoC@MoO Nanoclusters for Photothermal-Enhanced Tumor-Specific Tandem Catalysis Therapy.

机构信息

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

University of Chinese Academy of Sciences, Beijing 100190, P.R. China.

出版信息

ACS Appl Mater Interfaces. 2021 Dec 22;13(50):59649-59661. doi: 10.1021/acsami.1c17085. Epub 2021 Dec 12.

Abstract

Recent advances in the synthesis of multifunctional nanomaterials create new opportunities for the rational design of multimodal chemodynamic therapy (CDT) agents. Precisely tailoring the nanostructure and composition of CDT nanoagents for maximum efficacy remains a challenge. Herein, we report the successful synthesis of nanocarbon framework-supported ultrafine MoC@MoO nanoclusters (C/MoC@MoO) a pyrolysis of a Mo/ZIF-8 MOF precursor at 900 °C followed by mild surface oxidation. The developed C/MoC@MoO composite demonstrated outstanding performance in photothermal-enhanced tumor-specific tandem catalysis therapy. Specifically, C/MoC@MoO efficiently catalyzed the conversion of endogenous HO to cytotoxic O a Russell mechanism, while also converting the O byproduct to cytotoxic ·O an oxidase-like mechanism. A high dispersion of active Mo sites in the exposed MoO shell enhanced the reactive oxygen species (ROS)-generating efficiency of C/MoC@MoO. Moreover, the MoC core in the ultrafine MoC@MoO nanoclusters allowed NIR-II (1064 nm)-driven photothermal heating, which significantly boosted the CDT process through photothermal effects. Additionally, the CDT process relied on a redox cycle involving Mo/Mo species, which could be sustained by glutathione (GSH) consumption. Given these advantages, C/MoC@MoO demonstrated remarkable synergistic therapeutic efficacy for cancer treatment (both and ) through tumor microenvironment-stimulated generation of multiple ROS and NIR-II photothermal activity.

摘要

近期多功能纳米材料的合成进展为多模态化学动力学治疗(CDT)试剂的合理设计创造了新的机会。精确调整 CDT 纳米试剂的纳米结构和组成以实现最大疗效仍然是一个挑战。在此,我们报告了纳米碳框架负载的超精细 MoC@MoO 纳米团簇(C/MoC@MoO)的成功合成,这是通过在 900°C 下对 Mo/ZIF-8 MOF 前体进行热解,然后进行温和的表面氧化而实现的。所开发的 C/MoC@MoO 复合材料在光热增强的肿瘤特异性串联催化治疗中表现出优异的性能。具体而言,C/MoC@MoO 能够有效地催化内源性 HO 转化为细胞毒性 O 一种 Russell 机制,同时也将 O 副产物转化为细胞毒性·O 一种氧化酶样机制。暴露的 MoO 壳中活性 Mo 位点的高分散性增强了 C/MoC@MoO 的活性氧(ROS)生成效率。此外,超细 MoC@MoO 纳米团簇中的 MoC 核允许近红外-II(1064nm)驱动的光热加热,通过光热效应显著促进 CDT 过程。此外,CDT 过程依赖于涉及 Mo/Mo 物种的氧化还原循环,该循环可以通过谷胱甘肽(GSH)消耗得到维持。鉴于这些优势,C/MoC@MoO 通过肿瘤微环境刺激产生多种 ROS 和近红外-II 光热活性,对癌症治疗(和)表现出显著的协同治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验