Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
J Colloid Interface Sci. 2024 Dec 15;676:626-635. doi: 10.1016/j.jcis.2024.07.089. Epub 2024 Jul 14.
Chemodynamic therapy (CDT) via Fenton-like reaction is greatly attractive owing to its capability to generate highly cytotoxic •OH radicals from tumoral hydrogen peroxide (HO). However, the antitumor efficacy of CDT is often challenged by the relatively low radical generation efficiency and the high levels of antioxidative glutathione (GSH) in tumor microenvironment. Herein, an innovative photothermal Fenton-like catalyst, Fe-chelated polydopamine (PDA@Fe) nanoparticle, with excellent GSH-depleting capability is constructed via one-step molecular assembly strategy for dual-modal imaging-guided synergetic photothermal-enhanced chemodynamic therapy. Fe(III) ions in PDA@Fe nanoparticles can consume the GSH overexpressed in tumor microenvironment to avoid the potential •OH consumption, while the as-produced Fe(II) ions subsequently convert tumoral HO into cytotoxic •OH radicals through the Fenton reaction. Notably, PDA@Fe nanoparticles demonstrate excellent near-infrared light absorption that results in superior photothermal conversion ability, which further boosts above-mentioned cascade catalysis to yield more •OH radicals for enhanced CDT. Taken together with T-weighted magnetic resonance imaging (MRI) contrast enhancement (r = 8.13 mM s) and strong photoacoustic (PA) imaging signal of PDA@Fe nanoparticles, this design finally realizes the synergistic photothermal-chemodynamic therapy. Overall, this work offers a new promising paradigm to effectively accommodate both imaging and therapy functions in one well-defined framework for personalized precision disease treatment.
芬顿样反应的化学动力学疗法(CDT)因其能够从肿瘤过氧化氢(HO)中生成高细胞毒性的•OH 自由基而备受关注。然而,CDT 的抗肿瘤疗效常常受到相对较低的自由基生成效率和肿瘤微环境中高浓度抗氧化谷胱甘肽(GSH)的挑战。在此,通过一步分子组装策略构建了一种创新的光热芬顿样催化剂,即 Fe 螯合聚多巴胺(PDA@Fe)纳米粒子,具有优异的 GSH 耗竭能力,可用于双模态成像引导协同光热增强化学动力学治疗。PDA@Fe 纳米粒子中的 Fe(III) 离子可以消耗肿瘤微环境中过度表达的 GSH,以避免潜在的•OH 消耗,而随后产生的 Fe(II) 离子通过芬顿反应将肿瘤 HO 转化为细胞毒性的•OH 自由基。值得注意的是,PDA@Fe 纳米粒子具有优异的近红外光吸收能力,从而具有卓越的光热转换能力,进一步促进了上述级联催化反应,产生更多的•OH 自由基,以增强 CDT。结合 T 加权磁共振成像(MRI)增强(r = 8.13 mM s)和 PDA@Fe 纳米粒子的强光声(PA)成像信号,该设计最终实现了协同光热化学动力学治疗。总的来说,这项工作为在一个明确的框架内有效整合成像和治疗功能以实现个性化精准疾病治疗提供了一个新的有前景的范例。
Colloids Surf B Biointerfaces. 2024-7
ACS Appl Mater Interfaces. 2021-12-1
ACS Appl Mater Interfaces. 2024-9-4
ACS Appl Mater Interfaces. 2022-2-2
ACS Appl Mater Interfaces. 2022-4-13
Angew Chem Int Ed Engl. 2021-3-8
Int J Nanomedicine. 2025-3-6