Suppr超能文献

使用废生物质制备氮掺杂多孔碳材料用于储能应用。

Facile synthesis of nitrogen-doped porous carbon materials using waste biomass for energy storage applications.

机构信息

School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.

School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.

出版信息

Chemosphere. 2022 Feb;289:133225. doi: 10.1016/j.chemosphere.2021.133225. Epub 2021 Dec 8.

Abstract

A simple, low-cost, and green route for the preparation of lotus carbon (LC) materials using lotus parts including leaves, flowers, fruits (seed pods), and stems as a renewable precursor is reported. Different porous carbons, leaf-carbon (LF-carbon), flower-carbon (FL-carbon), fruit-carbon (FR-carbon), and stem-carbon (ST-carbon) were synthesized from different parts of the lotus plant by simple carbonization method. The as-synthesized LC materials were well-characterized by many techniques such as electron microscopy and spectroscopy techniques, X-ray diffraction, and BET-surface area analysis. These techniques confirmed the porous structure of LC materials and the existence of heteroatoms in the prepared LC materials. The mesoporous structure of LC materials suggested employing it for the supercapacitor applications. The obtained FR-Carbon exhibits a high specific capacitance of 160 F/g in a three-electrode system in an aqueous 1 M HSO electrolyte with a high rate performance of 52% retention from 0.5 to 5.0 A/g with good cycling stability of 95%. These results indicate that the porous carbon derived from lotus fruits is a potential electrode material for high-performance supercapacitors.

摘要

本文报道了一种简单、低成本、绿色的方法,以包括荷叶、荷花、莲蓬和莲茎在内的莲属植物各部分为可再生前体制备莲属碳(LC)材料。通过简单的碳化法,由莲属植物的不同部位合成了不同的多孔碳,分别为叶碳(LF-carbon)、花碳(FL-carbon)、果碳(FR-carbon)和茎碳(ST-carbon)。采用电子显微镜和光谱技术、X 射线衍射和 BET 比表面积分析等多种技术对所合成的 LC 材料进行了表征。这些技术证实了 LC 材料的多孔结构和所制备的 LC 材料中杂原子的存在。LC 材料的介孔结构表明其可用于超级电容器应用。在 1 M HSO 水溶液电解质的三电极系统中,获得的 FR-Carbon 的比电容高达 160 F/g,在 0.5 至 5.0 A/g 的电流密度下具有 52%的高倍率性能保持率和良好的循环稳定性,达到 95%。这些结果表明,由莲蓬衍生的多孔碳是用于高性能超级电容器的潜在电极材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验