Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK.
J Biol Chem. 2022 Jan;298(1):101486. doi: 10.1016/j.jbc.2021.101486. Epub 2021 Dec 9.
Salmonella enterica serovar Typhi causes typhoid fever. It possesses a Vi antigen capsular polysaccharide coat that is important for virulence and is the basis of a current glycoconjugate vaccine. Vi antigen is also produced by environmental Bordetella isolates, while mammal-adapted Bordetella species (such as Bordetella bronchiseptica) produce a capsule of undetermined structure that cross-reacts with antibodies recognizing Vi antigen. The Vi antigen backbone is composed of poly-α-(1→4)-linked N-acetylgalactosaminuronic acid, modified with O-acetyl residues that are necessary for vaccine efficacy. Despite its biological and biotechnological importance, some central aspects of Vi antigen production are poorly understood. Here we demonstrate that TviE and TviD, two proteins encoded in the viaB (Vi antigen production) locus, interact and are the Vi antigen polymerase and O-acetyltransferase, respectively. Structural modeling and site-directed mutagenesis reveal that TviE is a GT4-family glycosyltransferase. While TviD has no identifiable homologs beyond Vi antigen systems in other bacteria, structural modeling suggests that it belongs to the large SGNH hydrolase family, which contains other O-acetyltransferases. Although TviD possesses an atypical catalytic triad, its O-acetyltransferase function was verified by antibody reactivity and C NMR data for tviD-mutant polysaccharide. The B. bronchiseptica genetic locus predicts a mode of synthesis distinct from classical S. enterica Vi antigen production, but which still involves TviD and TviE homologs that are both active in a reconstituted S. Typhi system. These findings provide new insight into Vi antigen production and foundational information for the glycoengineering of Vi antigen production in heterologous bacteria.
鼠伤寒沙门氏菌血清型 Typhi 引起伤寒。它具有 Vi 抗原荚膜多糖涂层,这对于毒力很重要,也是当前糖缀合物疫苗的基础。Vi 抗原也由环境博德特氏菌分离株产生,而适应哺乳动物的博德特氏菌物种(如支气管败血博德特氏菌)产生的荚膜结构不确定,与识别 Vi 抗原的抗体发生交叉反应。Vi 抗原的骨架由聚-α-(1→4)-连接的 N-乙酰半乳糖胺糖醛酸组成,用 O-乙酰基修饰,这对于疫苗效力是必要的。尽管 Vi 抗原具有重要的生物学和生物技术意义,但 Vi 抗原产生的一些核心方面仍未得到很好的理解。在这里,我们证明了 TviE 和 TviD 是 viaB(Vi 抗原产生)基因座编码的两种蛋白,它们相互作用,分别是 Vi 抗原聚合酶和 O-乙酰转移酶。结构建模和定点突变揭示 TviE 是一种 GT4 家族糖基转移酶。虽然 TviD 在其他细菌的 Vi 抗原系统之外没有可识别的同源物,但结构建模表明它属于大的 SGNH 水解酶家族,其中包含其他 O-乙酰转移酶。尽管 TviD 具有非典型的催化三联体,但通过抗体反应和 tviD 突变多糖的 C NMR 数据验证了其 O-乙酰转移酶功能。B.支气管败血博德特氏菌的遗传基因座预测了一种与经典的 S. enterica Vi 抗原产生不同的合成模式,但仍涉及在重组 S. Typhi 系统中均具有活性的 TviD 和 TviE 同源物。这些发现为 Vi 抗原产生提供了新的见解,并为异源细菌中 Vi 抗原产生的糖工程提供了基础信息。